タグ「垂直二等分線」の検索結果

1ページ目:全13問中1問~10問を表示)
愛知教育大学 国立 愛知教育大学 2016年 第1問
平面上で,半径$r_1$の円$C_1$と半径$r_2$の円$C_2$が,異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているとする.線分$\mathrm{PQ}$の垂直二等分線を$\ell$として,円$C_1$と$\ell$の交点のうち円$C_2$の内部にある点を$\mathrm{R}$,円$C_2$と$\ell$の交点のうち円$C_1$の外部にある点を$\mathrm{S}$とする.

(1)$\displaystyle \angle \mathrm{PRQ}=\frac{\pi}{2},\ \angle \mathrm{PSQ}=\frac{\pi}{6}$のとき,$\displaystyle \frac{r_2}{r_1}$を求めよ.

(2)$\displaystyle \angle \mathrm{PRQ}=\frac{\pi}{3},\ \angle \mathrm{PSQ}=\frac{\pi}{4}$のとき,$\displaystyle \frac{r_2}{r_1}$を求めよ.

(3)$\displaystyle \angle \mathrm{PRQ}=\theta_1,\ \angle \mathrm{PSQ}=\theta_2$とするとき,$\displaystyle \frac{r_2}{r_1}$を$\theta_1$と$\theta_2$を用いて表せ.
金沢工業大学 私立 金沢工業大学 2016年 第3問
$\mathrm{O}$を原点とする座標平面上に$2$点$\mathrm{A}(2,\ 4)$,$\mathrm{B}(6,\ 0)$をとる.点$\mathrm{A}$,$\mathrm{B}$を通る直線を$\ell_1$,線分$\mathrm{AB}$の中点を$\mathrm{M}$とし,点$\mathrm{M}$を通り直線$\ell_1$に垂直な直線を$\ell_2$とする.

(1)点$\mathrm{M}$の座標は$([コ],\ [サ])$である.
(2)直線$\ell_1$の方程式は$y=-x+[シ]$であり,直線$\ell_2$の方程式は$y=x-[ス]$である.
(3)線分$\mathrm{OB}$の垂直二等分線と直線$\ell_2$との交点の座標は$([セ],\ [ソ])$である.
(4)$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る円の方程式は$x^2+y^2-[タ]x-[チ]y=0$である.
富山県立大学 公立 富山県立大学 2016年 第1問
$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が同一平面上にある.$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$は,$\mathrm{OA}:\mathrm{OB}=3:2$,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$を満たすとする.点$\mathrm{C}$が線分$\mathrm{OA}$の垂直二等分線と線分$\mathrm{OB}$の垂直二等分線の交点であるとき,$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$を用いて表せ.
防衛医科大学校 国立 防衛医科大学校 2015年 第3問
座標平面上の$3$点$\mathrm{A}(0,\ \sqrt{2})$,$\mathrm{B}(2 \sqrt{6},\ \sqrt{2})$,$\mathrm{C}(\sqrt{6},\ 3 \sqrt{2})$に対して,点$\mathrm{P}(p,\ q)$は線分$\mathrm{AP}$,$\mathrm{BP}$の垂直二等分線が点$\mathrm{C}$で交わるという条件を満たす点とする.ただし,$q>\sqrt{2}$である.また,点$\mathrm{A}$から直線$\mathrm{BP}$へ下ろした垂線と点$\mathrm{B}$から直線$\mathrm{AP}$へ下ろした垂線が点$\mathrm{T}(s,\ t)$で交わっているとする.このとき,以下の問に答えよ.

(1)点$\mathrm{P}$の軌跡を求め,図示せよ.
(2)点$\mathrm{T}$の軌跡を求め,図示せよ.
大阪教育大学 国立 大阪教育大学 2014年 第2問
座標平面上の原点を$\mathrm{O}$とし,$3$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(1,\ 1)$,$\mathrm{C}(1,\ 0)$を考える.$x$軸上に点$\mathrm{P}$をとり,線分$\mathrm{AP}$の垂直二等分線を$\ell$とする.点$\mathrm{P}$を通り$x$軸に垂直な直線と$\ell$との交点を$\mathrm{Q}$とする.

(1)$\mathrm{AQ}=\mathrm{QP}$であることを証明せよ.
(2)点$\mathrm{P}$が$x$軸上を動くとき,点$\mathrm{Q}$の軌跡はどのような曲線を描くか図示せよ.
(3)点$\mathrm{P}$は$x$軸の閉区間$[0,\ 1]$にあるとする.このとき,直線$\ell$が正方形$\mathrm{ABCO}$を二つの部分に切る.そのうちの点$\mathrm{C}$を含む部分の面積を$S$とする.$S$の最大値と最小値を求めよ.また,そのときの点$\mathrm{P}$の座標を求めよ.
京都薬科大学 私立 京都薬科大学 2014年 第3問
$\triangle \mathrm{OAB}$において,$\mathrm{OA}=1$,$\mathrm{OB}=2$,$\angle \mathrm{AOB}=\theta$とする.$\angle \mathrm{AOB}$の二等分線と辺$\mathrm{AB}$との交点を$\mathrm{C}$とする.次の$[ ]$にあてはまる数または式を記入せよ.ただし,$[ク]$~$[サ]$には整数を記入しなさい.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表すと,
\[ \overrightarrow{\mathrm{OC}}=[ア] \overrightarrow{\mathrm{OA}}+[イ] \overrightarrow{\mathrm{OB}} \]
となる.
(2)直線$\mathrm{OC}$上に点$\mathrm{P}$をとり,さらに点$\mathrm{P}$が辺$\mathrm{AB}$の垂直二等分線上にあるとき,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$および$\cos \theta$を用いて表すと,
\[ \overrightarrow{\mathrm{OP}}=[ウ] \overrightarrow{\mathrm{OA}}+[エ] \overrightarrow{\mathrm{OB}} \]
となる.このとき,$\mathrm{OC}:\mathrm{CP}=3:1$となるならば,$\cos \theta=[オ]$である.
(3)辺$\mathrm{OB}$上に点$\mathrm{D}$を$\mathrm{OD}:\mathrm{DB}=1:3$となるようにとる.線分$\mathrm{AD}$と線分$\mathrm{OC}$の交点を$\mathrm{Q}$とし,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表すと,
\[ \overrightarrow{\mathrm{OQ}}=[カ] \overrightarrow{\mathrm{OA}}+[キ] \overrightarrow{\mathrm{OB}} \]
となる.このとき,$\triangle \mathrm{OAQ}$,$\triangle \mathrm{QAC}$,$\triangle \mathrm{OQD}$および四角形$\mathrm{QCBD}$の面積をそれぞれ,$S_1,\ S_2,\ S_3,\ S_4$とすると,$S_1:S_2:S_3:S_4=[ク]:[ケ]:[コ]:[サ]$となる.
奈良教育大学 国立 奈良教育大学 2013年 第5問
三角形の$3$辺の垂直二等分線は$1$点で交わることを証明せよ.
山梨大学 国立 山梨大学 2012年 第3問
円$C:x^2+y^2=1$と点$\mathrm{A}(x_0,\ 0)$があり,$0<x_0<1$とする.原点$\mathrm{O}$と円$C$上の点$\mathrm{B}$を通る直線$\ell_1$と線分$\mathrm{AB}$の垂直二等分線$\ell_2$の交点を$\mathrm{P}$とする.点$\mathrm{B}$が円$C$上を動くとき,点$\mathrm{P}$の軌跡の方程式を求めよ.また,その方程式が表す図形を下の座標平面上に図示せよ.
(図は省略)
筑波大学 国立 筑波大学 2011年 第1問
Oを原点とする$xy$平面において,直線$y = 1$の$| \, x \, | \geqq 1$を満たす部分を$C$とする.

(1)$C$上に点A$(t,\ 1)$をとるとき,線分OAの垂直二等分線の方程式を求めよ.
(2)点Aが$C$全体を動くとき,線分OAの垂直二等分線が通過する範囲を求め,それを図示せよ.
広島市立大学 公立 広島市立大学 2011年 第3問
平面上の三角形ABCの頂点A,B,Cの位置ベクトルをそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$とするとき,以下の問いに答えよ.

(1)線分ABの垂直二等分線を$\ell$とする.$\ell$上の点Pの位置ベクトルを$\overrightarrow{p}$とするとき,直線$\ell$のベクトル方程式は$\displaystyle \overrightarrow{p} \cdot (\overrightarrow{b} - \overrightarrow{a})=\frac{1}{2}(|\overrightarrow{b}|^2-|\overrightarrow{a}|^2)$で与えられることを示せ.
(2)(1)の結果を用いて,三角形ABCの3つの辺の垂直二等分線が1点Dで交わることを示せ.
(3)(2)で定まる点Dの位置ベクトル$\overrightarrow{d}$が,$\displaystyle \overrightarrow{d}=\frac{4}{7}\overrightarrow{a}+\frac{4}{7}\overrightarrow{b}-\frac{1}{7}\overrightarrow{c}$を満たすものとする.

(4)辺ABの中点をMとするとき,3点C,M,Dは一直線上にあることを示し,$\text{CM}:\text{MD}$を求めよ.
(5)三角形ABCの三辺の長さの比$\text{BC}:\text{CA}:\text{AB}$を求めよ.
スポンサーリンク

「垂直二等分線」とは・・・

 まだこのタグの説明は執筆されていません。