タグ「固定」の検索結果

3ページ目:全28問中21問~30問を表示)
明治大学 私立 明治大学 2011年 第2問
曲線$C:y=x^2$上に,$3$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$,$\mathrm{B}^\prime (-b,\ b^2)$が与えられている.ただし,$-b<a<0<b$とする.

(1)$\mathrm{A}$,$\mathrm{B}$を結ぶ直線$\ell$の方程式は,$[ ]$である.
(2)点$\mathrm{P}(p,\ p^2)$を通り,$y$軸に平行な直線が$\ell$と交わる点を$\mathrm{Q}$とする.ただし,$a<p<b$とする.$\mathrm{PQ}$の長さは,$[ ]$である.
(3)$\mathrm{A}$,$\mathrm{B}$を固定して,$\mathrm{P}$が$C$上で$\mathrm{A}$,$\mathrm{B}$の間を動くとき,$\triangle \mathrm{ABP}$の面積の最大値は,$[ ]$である.
(4)$\mathrm{B}$,$\mathrm{B}^\prime$を固定して,$\mathrm{A}$,$\mathrm{P}$が$C$上で$\mathrm{B}$,$\mathrm{B}^\prime$の間を動くとき,四角形$\mathrm{BB}^\prime \mathrm{AP}$の面積の最大値を求めよ.またこのときの$\mathrm{A}$,$\mathrm{P}$の位置を求めよ.
明治大学 私立 明治大学 2011年 第2問
次のア~へに当てはまる$0$~$9$の数字を解答欄に入れよ.

(1)$0 \leqq x,\ y$かつ$3x+2y=4$を満たす$(x,\ y)$に対して,$\displaystyle x^3+\frac{8}{3}y^3$は,$(x,\ y)=([ア],\ [イ])$のとき,最大値$\displaystyle \frac{[ウエ]}{[オ]}$となり,$\displaystyle (x,\ y)=\left( [カ],\ \frac{[キ]}{[ク]} \right)$のとき,最小値$\displaystyle \frac{[ケ]}{[コ]}$となる.

(2)$0 \leqq y \leqq 4x-2x^2$を満たす$(x,\ y)$にたいして,$z=4x^2+2xy-8x$の最大値と最小値を考える.条件から考える$x$の範囲は,$[サ] \leqq x \leqq [シ]$である.この範囲の$x$を$1$つ固定して,$z$の値を考えると,$z$は,$y$についての$1$次式だから,固定された$x$にたいして,$z$は$y=[ス]x-[セ]x^2$のとき,最も大きく$z=-[ソ]x^3+[タチ]x^2-[ツ]x$となる.従って,考える範囲の$(x,\ y)$にたいしては,$\displaystyle (x,\ y)=\left( [テ]+\frac{\sqrt{[ト]}}{[ナ]},\ \frac{[ニ]}{[ヌ]} \right)$のとき,$z$は最大値$\displaystyle \frac{[ネ] \sqrt{[ノ]}}{[ハ]}$となる.同様のやり方で最小値をもとめると,$(x,\ y)=([ヒ],\ [フ])$のとき,$z$は最小値$-[ヘ]$となる.
上智大学 私立 上智大学 2011年 第2問
$\mathrm{O}$を原点とする座標平面上に,放物線$F:y=x^2+1$および,点$\mathrm{A}(5,\ 0)$を中心とする半径$4$の円$C$がある.$F$上に点$\mathrm{P}(t,\ t^2+1)$,$C$上に点$\mathrm{Q}(a,\ b)$をとる.

(1)$\mathrm{P}$における放物線$F$の接線と直線$\mathrm{AP}$とが直交するとき,線分$\mathrm{AP}$の長さは$[タ] \sqrt{[チ]}$である.
(2)$\mathrm{Q}$を固定し,$\mathrm{P}$のみが動くとする.$\triangle \mathrm{OPQ}$の面積は$\displaystyle t=\frac{[ツ]}{[テ]} \frac{b}{a}$で最小値をとる.その最小値を$a$で表すと
\[ \frac{1}{8} \left( [ト]a+\frac{[ナ]}{a}+[ニ] \right) \]
である.
(3)$\mathrm{P}$,$\mathrm{Q}$がともに動くとする.$\triangle \mathrm{OPQ}$の面積は$\displaystyle a=\frac{[ヌ]}{[ネ]} \sqrt{[ノ]}$で最小値
\[ \frac{[ハ]}{[ヒ]}+\frac{[フ]}{[ヘ]} \sqrt{[ホ]} \]
をとる.
滋賀県立大学 公立 滋賀県立大学 2011年 第3問
$xy$平面上の原点O,定点A$(a,\ 0) \ (a>0)$,定点B$(0,\ b) \ (b>0)$を頂点とする直角三角形OABがある.直角三角形OAB内の点M$(p,\ q)$から辺OA,OB,ABに引いた垂線と各辺との交点をそれぞれE,F,Gとする.

(1)$L=\text{ME} \cdot \text{MF} \cdot \text{MG}$とおいたとき,$L$を$a,\ b,\ p,\ q$で表せ.
(2)$L$において,$q$を固定し,$p$を変数としたとき,$L$の最大値$L_1$を$a,\ b,\ q$で表せ.
(3)$L_1$において,$q$を変数としたとき,$L_1$の最大値$L_2$を$a,\ b$で表せ.
大阪大学 国立 大阪大学 2010年 第4問
半径3の球$T_1$と半径1の球$T_2$が,内接した状態で空間に固定されている.半径1の球$S$が次の条件(A),(B)を同時に満たしながら動く.
\begin{eqnarray}
\text{(A)} \quad S \text{は} T_1 \text{の内部にあるか} T_1 \text{に内接している.} \nonumber \\
\text{(B)} \quad S \text{は} T_2 \text{の外部にあるか} T_2 \text{に外接している.} \nonumber
\end{eqnarray}
$S$の中心が存在しうる範囲を$D$とするとき,立体$D$の体積を求めよ.
東京学芸大学 国立 東京学芸大学 2010年 第2問
下の問いに答えよ.

(1)座標平面上の点P$(s,\ t) \ (t>2)$から,円$x^2+(y-1)^2=1$に引いた2本の接線と$x$軸の交点をそれぞれQ$(\alpha,\ 0)$,R$(\beta,\ 0) \ (\alpha>\beta)$とする.点Pの$y$座標$t$を固定して$x$座標$s$を変化させるとき,$\alpha-\beta$の最小値を求めよ.
(2)半径1の円に外接する三角形の3辺の長さの和の最小値を求めよ.
玉川大学 私立 玉川大学 2010年 第3問
半径$1$の球に内接する直方体を考える.これらの体積の最大値$M$を求めたい.

(1)直方体の$1$つの辺の長さを$x$と固定したときの直方体の体積の最大値$V(x)$を求めよ.
(2)$M$を求めよ.
滋賀県立大学 公立 滋賀県立大学 2010年 第2問
座標平面の原点$\mathrm{O}$を中心とする半径$r$の円を$C$とする.$C$上の$2$点$\mathrm{P}_1$,$\mathrm{P}_2$を原点に関して対称な位置にとる.また,点$\mathrm{Q}$を平面上の任意の点とし,$L={\mathrm{QP}_1}^2+{\mathrm{QP}_2}^2$とおく.

(1)$\mathrm{Q}$を固定したとき,$L$は$\mathrm{P}_1$,$\mathrm{P}_2$のとり方に依存せず一定であることを示せ.
(2)$\mathrm{Q}$が放物線$y=-x^2+5x-8$上を動くとき,$L$の最小値とそのときの$\mathrm{Q}$の座標を求めよ.
スポンサーリンク

「固定」とは・・・

 まだこのタグの説明は執筆されていません。