タグ「固定」の検索結果

1ページ目:全28問中1問~10問を表示)
九州大学 国立 九州大学 2016年 第1問
座標平面において,$x$軸上に$3$点$(0,\ 0)$,$(\alpha,\ 0)$,$(\beta,\ 0) (0<\alpha<\beta)$があり,曲線$C:y=x^3+ax^2+bx$が$x$軸とこの$3$点で交わっているものとする.ただし,$a,\ b$は実数である.このとき,以下の問いに答えよ.

(1)曲線$C$と$x$軸で囲まれた$2$つの部分の面積の和を$S$とする.$S$を$\alpha$と$\beta$の式で表せ.
(2)$\beta$の値を固定して,$0<\alpha<\beta$の範囲で$\alpha$を動かすとき,$S$を最小とする$\alpha$を$\beta$の式で表せ.
名古屋大学 国立 名古屋大学 2016年 第2問
$2$つの円$C:(x-1)^2+y^2=1$と$D:(x+2)^2+y^2=7^2$を考える.また原点を$\mathrm{O}(0,\ 0)$とする.このとき,次の問に答えよ.

(1)円$C$上に,$y$座標が正であるような点$\mathrm{P}$をとり,$x$軸の正の部分と線分$\mathrm{OP}$のなす角を$\theta$とする.このとき,点$\mathrm{P}$の座標と線分$\mathrm{OP}$の長さを$\theta$を用いて表せ.
(2)$(1)$でとった点$\mathrm{P}$を固定したまま,点$\mathrm{Q}$が円$D$上を動くとき,$\triangle \mathrm{OPQ}$の面積が最大になるときの$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(3)点$\mathrm{P}$が円$C$上を動き,点$\mathrm{Q}$が円$D$上を動くとき,$\triangle \mathrm{OPQ}$の面積の最大値を求めよ.

ただし$(2)$,$(3)$においては,$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$が同一直線上にあるときは,$\triangle \mathrm{OPQ}$の面積は$0$であるとする.
成城大学 私立 成城大学 2016年 第1問
座標空間の原点を$\mathrm{O}$とし,点$\mathrm{P}(x,\ y,\ z)$について,$\overrightarrow{\mathrm{OP}}$の大きさを$d$,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{e_3}=(0,\ 0,\ 1)$のなす角を$\alpha$とする.そして,点$\mathrm{P}$から$xy$平面に下ろした垂線を$\mathrm{PQ}$とし,$\overrightarrow{\mathrm{OQ}}$と$\overrightarrow{e_1}=(1,\ 0,\ 0)$のなす角を$\beta$とする.ただし,$d \geqq 0$,$0 \leqq \alpha \leqq \pi$,$0 \leqq \beta \leqq 2\pi$であるとし,$\mathrm{P}$が$z$軸上にあるとき$\beta=0$であるものとする.

(1)$x,\ y,\ z$を$d,\ \alpha,\ \beta$を用いて表せ.
(2)$d=3$を固定し,$\alpha$が$0$から$\pi$,$\beta$が$0$から$2\pi$まで変化したときに点$\mathrm{P}$が描く図形は何か.また,その面積を求めよ.
(3)$\displaystyle \alpha=\frac{\pi}{6}$を固定し,$d$が$0$から$4$,$\beta$が$0$から$2\pi$まで変化したときに点$\mathrm{P}$が描く図形は何か.また,その面積を求めよ.
センター試験 問題集 センター試験 2015年 第4問
同じ大きさの$5$枚の正方形の板を一列に並べて,図のような掲示板を作り,壁に固定する.赤色,緑色,青色のペンキを用いて,隣り合う正方形どうしが異なる色となるように,この掲示板を塗り分ける.ただし,塗り分ける際には,$3$色のペンキをすべて使わなければならないわけではなく,$2$色のペンキだけで塗り分けることがあってもよいものとする.
(図は省略)

(1)このような塗り方は,全部で$[アイ]$通りある.
(2)塗り方が左右対称となるのは,$[ウエ]$通りある.
(3)青色と緑色の$2$色だけで塗り分けるのは,$[オ]$通りある.
(4)赤色に塗られる正方形が$3$枚であるのは,$[カ]$通りある.
(5)赤色に塗られる正方形が$1$枚である場合について考える.
\begin{itemize}
どちらかの端の$1$枚が赤色に塗られるのは,$[キ]$通りある.
端以外の$1$枚が赤色に塗られるのは,$[クケ]$通りある.
\end{itemize}
よって,赤色に塗られる正方形が$1$枚であるのは,$[コサ]$通りある.
(6)赤色に塗られる正方形が$2$枚であるのは,$[シス]$通りある.
浜松医科大学 国立 浜松医科大学 2015年 第2問
整数ではない実数$x$に対して$\displaystyle f(x)=\frac{1}{x-[x]}$と定める.ただし,$[x]$は$l<x<l+1$を満たす整数$l$を表す.以下の問いに答えよ.

(1)$f(\sqrt{2}),\ f(f(\sqrt{2}))$を計算し,簡潔な形で答えよ.
(2)$f(\sqrt{3}),\ f(f(\sqrt{3})),\ f(f(f(\sqrt{3})))$を計算し,簡潔な形で答えよ.
(3)自然数$n$に対して,$n<x<n+1$かつ$f(x)=x$を満たす$x$を求めよ.
(4)自然数$n$を$1$つ固定する.$n<x<n+1$の範囲の$x$で,$f(x)$が整数ではなく,さらに$f(f(x))=x$を満たす$x$を大きい順に並べる.その中の$x$で$f(x)=x$を満たすものは何番目に現れるかを答えよ.
山梨大学 国立 山梨大学 2015年 第5問
点$\mathrm{O}$を原点とする座標平面上において,点$\mathrm{P}(-6,\ 0)$をとる.また,曲線
\[ x=3 \cos \theta,\quad y=3 \sin \theta \quad (0 \leqq \theta \leqq \pi) \]
を$C_1$とする.曲線$C_2,\ C_3,\ \cdots,\ C_n,\ \cdots$を次のように順次定義する.

「点$\mathrm{Q}$が曲線$C_n$上を動くとき,線分$\mathrm{PQ}$を$1:2$に内分する点$\mathrm{R}$のなす曲線を$C_{n+1}$とする.」
また, 各自然数$n$に対して,点$\mathrm{P}$を通る$x$軸と異なる直線が曲線$C_n$と接するとき,その接点を$\mathrm{A}_n$とする.次に,$\theta$を$1$つ固定し,点$\mathrm{X}_1(x_1,\ y_1)$を$x_1=3 \cos \theta$,$y_1=3 \sin \theta$となる曲線$C_1$上の点とし,点$\mathrm{X}_2,\ \mathrm{X}_3,\ \cdots,\ \mathrm{X}_n,\ \cdots$を次のように順次定義する.
「線分$\mathrm{PX}_n$を$1:2$に内分する点を$\mathrm{X}_{n+1}(x_{n+1},\ y_{n+1})$とする.」

(1)$x_2$および$y_2$を$\theta$を用いて表せ.
(2)$\angle \mathrm{A}_1 \mathrm{PO}$および$\angle \mathrm{A}_2 \mathrm{PO}$を求めよ.
(3)$x_n,\ y_n$を$\theta$を用いて表せ.
(4)極限値$\displaystyle \lim_{n \to \infty}x_n$および$\displaystyle \lim_{n \to \infty}y_n$を求めよ.
(5)直線$\mathrm{A}_n \mathrm{A}_{n+1}$,曲線$C_n$および$C_{n+1}$で囲まれた領域の面積を$a_n$とするとき,極限値$\displaystyle \sum_{n=1}^\infty a_n$を求めよ.
茨城大学 国立 茨城大学 2015年 第2問
座標平面上の相異なる$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$が$2$つの条件
\[ \left\{ \begin{array}{l}
|\overrightarrow{\mathrm{PQ}}|=|\overrightarrow{\mathrm{QR}}| \\
\overrightarrow{\mathrm{QP}} \cdot \overrightarrow{\mathrm{QR}}=-\displaystyle\frac{1}{3} \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \right. \cdots\cdots (*) \]
を満たしながら動くものとする.$|\overrightarrow{\mathrm{PQ}}|$を$a$とする.以下の各問に答えよ.

(1)$|\overrightarrow{\mathrm{PR}}|$を$a$で表せ.
(2)$\displaystyle \angle \mathrm{PQR}=\frac{2}{3} \pi$のときの$a$を求めよ.また,$\angle \mathrm{PQR}=\pi$のときの$a$を求めよ.
(3)$a$がとり得る値の範囲を求めよ.
(4)原点を$\mathrm{O}$とし,点$\mathrm{R}$を$(1,\ 0)$に固定する.点$\mathrm{P}$,$\mathrm{Q}$が$(*)$および
\[ |\overrightarrow{\mathrm{OP}}|=|\overrightarrow{\mathrm{PQ}}| \]
を満たしながら動くとする.点$\mathrm{P}$が描く軌跡を求めよ.
(5)$(4)$において,点$\mathrm{P}$が描く軌跡の長さを求めよ.
宮崎大学 国立 宮崎大学 2015年 第4問
下図の$\triangle \mathrm{ABC}$は,$\angle \mathrm{A}={90}^\circ$で$\mathrm{AB}=1$の直角二等辺三角形である.この$\triangle \mathrm{ABC}$の中に下図のように長方形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \mathrm{P}_4$と長方形$\mathrm{Q}_1 \mathrm{Q}_2 \mathrm{Q}_3 \mathrm{Q}_4$をおき,頂点$\mathrm{P}_1$と$\mathrm{Q}_1$が線分$\mathrm{AB}$上に,頂点$\mathrm{P}_4$と$\mathrm{Q}_4$が線分$\mathrm{AC}$上にあるようにする.さらに,頂点$\mathrm{P}_2$と$\mathrm{P}_3$がともに線分$\mathrm{BC}$上に,頂点$\mathrm{Q}_2$と$\mathrm{Q}_3$がともに線分$\mathrm{P}_1 \mathrm{P}_4$上にあるようにする.$x=\mathrm{BP}_2$,$y=\mathrm{P}_1 \mathrm{Q}_2$とするとき,次の各問に答えよ.
(図は省略)

(1)長方形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \mathrm{P}_4$の面積と長方形$\mathrm{Q}_1 \mathrm{Q}_2 \mathrm{Q}_3 \mathrm{Q}_4$の面積の和を$x$と$y$を用いて表せ.
(2)$x$の値を固定して$y$の値を変化させるとき,長方形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \mathrm{P}_4$の面積と長方形$\mathrm{Q}_1 \mathrm{Q}_2 \mathrm{Q}_3 \mathrm{Q}_4$の面積の和の最大値を$S(x)$とおく.このとき,$S(x)$を,$x$を用いて表せ.
(3)$x$の値を変化させるとき,$(2)$で求めた$S(x)$の最大値を求めよ.
早稲田大学 私立 早稲田大学 2015年 第5問
$a>0$とする.$xy$平面上に点$\mathrm{A}(-\sqrt{2}a,\ 0)$,$\mathrm{B}(\sqrt{2}a,\ 0)$を固定する.動点$\mathrm{P}(x,\ y)$は条件$\mathrm{AP}+\mathrm{BP}=4a$をみたすものとする.次の問に答えよ.

(1)点$\mathrm{P}$の軌跡として得られる曲線の方程式を求めよ.ただし,答のみでよい.
(2)$(1)$の曲線の$-\sqrt{2}a \leqq x \leqq \sqrt{2}a$の部分と,直線$x=-\sqrt{2}a$,直線$x=\sqrt{2}a$で囲まれる図形を$x$軸のまわりに$1$回転してできる立体を考える.この立体の体積$V$を求めよ.
(3)$(2)$の立体の表面積$S$を求めよ.ここで,$y=f(x)$のグラフの$p \leqq x \leqq q$の部分を$x$軸のまわりに$1$回転してできる曲面の面積は
\[ 2\pi \int_p^q \sqrt{\{f(x)\}^2+\{f(x)f^\prime(x)\}^2} \, dx \]
として計算してよい.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
銀行口座(以降,口座)から$\mathrm{IC}$カードに金額を移転し,そのカードを用いて支払いをおこなうものとする.口座からカードに移転した金額を超過してさらに支払う必要が生じた場合,その分は銀行が自動的に立て替えて払うものとする.

このとき,口座からカードに金額を移転することに伴う利子収入の減少分,および銀行からの借入れに伴う利払い,そして口座からカードへの移転に伴う手数料,それらの合計$Z$を最小にする問題を考える.適当な仮定のもと,$Z$は独立変数$x,\ y$の関数として,つぎのように表わされる.
\[ Z=\frac{xy^2}{40A}+\frac{A^2-2xyA+x^2y^2}{30xA}+6x \]
ただし$(x,\ y)$は座標平面の第$1$象限の点であり,$A$は定数である.

(1)$x$を固定し,$Z$を$y$の関数と考えれば,その最小値は
\[ y=\frac{[$35$][$36$]}{[$37$][$38$]} \frac{A}{x} \]
のときである.
(2)$Z$に$(1)$の結果を代入し,$Z$を$x$のみの関数とみれば
\[ x=\sqrt{\frac{[$39$][$40$][$41$]}{[$42$][$43$][$44$]}A} \]
のとき$Z$は最小になる.
(3)以上から$Z$の最小値は
\[ \sqrt{\frac{[$45$][$46$][$47$]}{[$48$][$49$][$50$]}A} \]
である.
スポンサーリンク

「固定」とは・・・

 まだこのタグの説明は執筆されていません。