タグ「図示」の検索結果

9ページ目:全371問中81問~90問を表示)
宮城教育大学 国立 宮城教育大学 2015年 第2問
実数$p,\ q$に対して,
\[ f(x)=x^2+px+q,\quad g(x)=x^3-3x \]
とおく.$2$次方程式$f(x)=0$の$2$つの解を$\alpha,\ \beta$として,次の問に答えよ.

(1)$2$次方程式の解と係数の関係を用いて,積$g(\alpha)g(\beta)$を$p,\ q$を用いて表せ.
(2)$g(\alpha)=0$または$g(\beta)=0$であるとき,点$(p,\ q)$の集合を座標平面上に図示せよ.
(3)$g(\alpha)=0$または$g(\beta)=0$ならば,$\alpha$と$\beta$は実数であることを示せ.
千葉大学 国立 千葉大学 2015年 第6問
平面上に$2$つの円
\[ C_1:x^2+y^2=1,\quad C_2:\left( x+\frac{3}{2} \right)^2+y^2=\frac{1}{4} \]
があり,点$(-1,\ 0)$で接している.

点$\mathrm{P}_1$は$C_1$上を反時計周りに一定の速さで動き,点$\mathrm{P}_2$は$C_2$上を反時計周りに一定の速さで動く.二点$\mathrm{P}_1$,$\mathrm{P}_2$はそれぞれ点$(1,\ 0)$および点$(-1,\ 0)$を時刻$0$に同時に出発する.$\mathrm{P}_1$は$C_1$を一周して時刻$2 \pi$に点$(1,\ 0)$に戻り,$\mathrm{P}_2$は$C_2$を二周して時刻$2 \pi$に点$(-1,\ 0)$に戻るものとする.$\mathrm{P}_1$と$\mathrm{P}_2$の中点を$\mathrm{M}$とおく.
$\mathrm{P}_1$が$C_1$を一周するときの点$\mathrm{M}$の軌跡の概形を図示して,その軌跡によって囲まれる図形の面積を求めよ.
岐阜大学 国立 岐阜大学 2015年 第3問
$m>1$とし,連立不等式
\[ \left\{ \begin{array}{l}
y \geqq x^2 \\
(y-2mx)(y+2mx-3m^2) \leqq 0 \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
の表す領域を$D$とする.以下の問に答えよ.

(1)$y=x^2$と$y=-2mx+3m^2$の共有点を求めよ.
(2)領域$D$を図示せよ.
(3)点$\mathrm{P}(x,\ y)$が$D$内を動くとき,$2y-x$の最大値と最小値を求めよ.
(4)点$\mathrm{P}(x,\ y)$が$D$内を動くとき,$2y-6mx$の最大値と最小値を求めよ.
岐阜大学 国立 岐阜大学 2015年 第3問
$m>1$とし,連立不等式
\[ \left\{ \begin{array}{l}
y \geqq x^2 \\
(y-2mx)(y+2mx-3m^2) \leqq 0 \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
の表す領域を$D$とする.以下の問に答えよ.

(1)$y=x^2$と$y=-2mx+3m^2$の共有点を求めよ.
(2)領域$D$を図示せよ.
(3)点$\mathrm{P}(x,\ y)$が$D$内を動くとき,$2y-x$の最大値と最小値を求めよ.
(4)点$\mathrm{P}(x,\ y)$が$D$内を動くとき,$2y-6mx$の最大値と最小値を求めよ.
愛知教育大学 国立 愛知教育大学 2015年 第4問
放物線$y=x^2+ax+b$により,$xy$平面を$2$つの領域に分割する.以下の問いに答えよ.

(1)点$(-1,\ 4)$と点$(2,\ 8)$が放物線上にはなく別々の領域に属するような$a,\ b$の条件を求めよ.さらに,その条件を満たす$(a,\ b)$の領域を$ab$平面に図示せよ.
(2)$a,\ b$が$(1)$で求めた条件を満たすとき,$a^2+b^2$がとり得る値の範囲を求めよ.
大阪教育大学 国立 大阪教育大学 2015年 第2問
$xy$平面において,ベクトル$\overrightarrow{a}=(1,\ \sqrt{3})$,$\overrightarrow{b}=(x,\ y)$に対して,
\[ |\overrightarrow{a} \cdot \overrightarrow{b}| \geqq 1 \quad \text{かつ} \quad |\overrightarrow{b}| \leqq 1 \]
を満たす点$(x,\ y)$の領域を$D$とする.ただし,$\overrightarrow{a} \cdot \overrightarrow{b}$は$\overrightarrow{a}$と$\overrightarrow{b}$の内積,$|\overrightarrow{b}|$はベクトル$\overrightarrow{b}$の長さを表す.以下の問に答えよ.

(1)$D$を図示せよ.
(2)$D$の面積を求めよ.
秋田大学 国立 秋田大学 2015年 第2問
連立不等式$x \geqq 0$,$y \geqq 0$,$3x+y \leqq 8$,$x+3y \leqq 9$が表す領域を$A$とする.次の問いに答えよ.

(1)直線$3x+y=8$と直線$x+3y=9$の交点の座標を求めよ.また,領域$A$を図示し,その面積を求めよ.
(2)領域$A$において,$\displaystyle \frac{3}{4}x+y$の最大値と最小値を求めよ.また,そのときの$x,\ y$の値を求めよ.
(3)不等式$\displaystyle y \geqq \frac{8}{3}x^2$が表す領域と領域$A$の共通部分を領域$B$とする.領域$B$の面積を求めよ.
(4)不等式$y \leqq ax$が表す領域と領域$A$の共通部分を領域$C$とする.領域$C$の面積が領域$B$の面積と等しくなる実数$a$の値を求めよ.
秋田大学 国立 秋田大学 2015年 第3問
連立不等式$x \geqq 0$,$y \geqq 0$,$3x+y \leqq 8$,$x+3y \leqq 9$が表す領域を$A$とする.次の問いに答えよ.

(1)直線$3x+y=8$と直線$x+3y=9$の交点の座標を求めよ.また,領域$A$を図示し,その面積を求めよ.
(2)領域$A$において,$\displaystyle \frac{3}{4}x+y$の最大値と最小値を求めよ.また,そのときの$x,\ y$の値を求めよ.
(3)不等式$\displaystyle y \geqq \frac{8}{3}x^2$が表す領域と領域$A$の共通部分を領域$B$とする.領域$B$の面積を求めよ.
(4)不等式$y \leqq ax$が表す領域と領域$A$の共通部分を領域$C$とする.領域$C$の面積が領域$B$の面積と等しくなる実数$a$の値を求めよ.
秋田大学 国立 秋田大学 2015年 第2問
連立不等式$x \geqq 0$,$y \geqq 0$,$3x+y \leqq 8$,$x+3y \leqq 9$が表す領域を$A$とする.次の問いに答えよ.

(1)直線$3x+y=8$と直線$x+3y=9$の交点の座標を求めよ.また,領域$A$を図示し,その面積を求めよ.
(2)領域$A$において,$\displaystyle \frac{3}{4}x+y$の最大値と最小値を求めよ.また,そのときの$x,\ y$の値を求めよ.
(3)不等式$\displaystyle y \geqq \frac{8}{3}x^2$が表す領域と領域$A$の共通部分を領域$B$とする.領域$B$の面積を求めよ.
(4)不等式$y \leqq ax$が表す領域と領域$A$の共通部分を領域$C$とする.領域$C$の面積が領域$B$の面積と等しくなる実数$a$の値を求めよ.
島根大学 国立 島根大学 2015年 第1問
$t$を$0<t<1$をみたす実数とする.$xy$平面上の$3$点$\mathrm{A}(-1,\ 1)$,$\mathrm{B}(0,\ -1)$,$\mathrm{C}(1,\ 1)$に対し,線分$\mathrm{AB}$を$t:1-t$に内分する点を$\mathrm{P}$とし,線分$\mathrm{BC}$を$t:1-t$に内分する点を$\mathrm{Q}$とする.さらに,線分$\mathrm{PQ}$を$t:1-t$に内分する点を$\mathrm{R}$とし,点$\mathrm{P}$と点$\mathrm{Q}$を通る直線を$\ell$とする.このとき,次の問いに答えよ.

(1)点$\mathrm{R}$の座標を$t$を用いて表せ.
(2)直線$\ell$が曲線$y=x^2$の点$\mathrm{R}$における接線であることを示せ.
(3)$t$が条件$0<t<1$をみたしながら変化するとき,直線$\ell$が通過する領域を図示せよ.
スポンサーリンク

「図示」とは・・・

 まだこのタグの説明は執筆されていません。