タグ「図形」の検索結果

9ページ目:全857問中81問~90問を表示)
福井大学 国立 福井大学 2016年 第4問
$a$を正の定数とし,$f(x)=(x+a) \log x$とする.曲線$C:y=f(x)$上の点$\mathrm{P}(a,\ f(a))$における接線$\ell$が原点を通るとき,以下の問いに答えよ.

(1)$a$の値と,接線$\ell$の方程式を求めよ.
(2)曲線$C$と$x$軸,および接線$\ell$とで囲まれた図形を,$y$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
(3)定数$k$が$\displaystyle k \geqq \frac{1}{a}$を満たすとき,関数$g(x)=(x+k) \log x$は極値を持たないことを示せ.
福井大学 国立 福井大学 2016年 第1問
関数$f(x)=e^x+e^{-x}$があり,$g(x)=f^\prime(x)$,$h(x)=xf(x)$とおく.$a$を実数として,点$\mathrm{P}(a,\ f(a))$における曲線$y=f(x)$の法線を$\ell$とし,点$\mathrm{Q}(a,\ g(a))$における曲線$y=g(x)$の法線を$m$とする.$\ell$と$m$との交点を$\mathrm{R}$とするとき,以下の問いに答えよ.

(1)$\mathrm{R}$の座標を,$a$を用いて表せ.
(2)$\mathrm{PR}^2-\mathrm{QR}^2$の値を求めよ.
(3)$2$つの曲線$y=g(x)$,$y=h(x)$および直線$x=1$によって囲まれた図形を,$x$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
山口東京理科大学 私立 山口東京理科大学 2016年 第5問
次の$2$つの放物線
\[ y=x^2+2x-4,\quad y=-x^2+2x+2 \]
を考える.

(1)$2$つの放物線の交点における$x$座標は,$\pm \sqrt{[ハ]}$である.
(2)$2$つの放物線で囲まれた図形の面積は,$[ヒ] \sqrt{[フ]}$である.
早稲田大学 私立 早稲田大学 2016年 第5問
$xyz$空間上に点$\mathrm{A}(0,\ 0,\ \sqrt{3})$をとる.$xy$平面上の点$\mathrm{P}(a,\ b,\ 0)$は,線分$\mathrm{AP}$の長さが$2$で,$a \geqq 0$,$b \geqq 0$となるように動く.このとき線分$\mathrm{AP}$がえがく図形を$F$とする.次の問に答えよ.

(1)点$\mathrm{P}$の軌跡を$xy$平面上に図示せよ.
(2)点$\mathrm{Q}(x,\ y,\ z)$を図形$F$上の点とするとき,$z$を$x,\ y$を用いて表せ.
(3)図形$F$,座標平面$x=0$,$y=0$,$z=0$によって囲まれる部分を$x$軸の周りに$1$回転してできる回転体を$V$とする.$V$の平面$x=t$による切り口の面積$S(t)$を,$t$を用いて表せ.
(4)$V$の体積を求めよ.
早稲田大学 私立 早稲田大学 2016年 第2問
点$\mathrm{F}(0,\ 1)$を通り,直線$y=-1$に接する円の中心が描く軌跡を曲線$C$とする.このとき,曲線$C$を表す方程式は
\[ y=\frac{1}{[ウ]}x^2 \]
となる.また,曲線$C$上に$x$座標が正である点$\mathrm{P}$をとる.線分$\mathrm{FP}$の長さが$4$となるとき,曲線$C$の点$\mathrm{P}$における接線と曲線$C$および$y$軸とで囲まれる図形の面積は$[エ] \sqrt{[オ]}$となる.
同志社大学 私立 同志社大学 2016年 第3問
$a$を正の実数とし,数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$が漸化式
\[ a_1=a,\quad \log_2 a_{n+1}=-|\log_2 a_n|+2 \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定められているとき,次の問いに答えよ.

(1)$x \geqq 1$のとき,$\log_2 y=-|\log_2 x|+2$を満たす$y$を$x$を用いて表せ.
(2)座標平面上で,方程式$\log_2 y=-|\log_2 x|+2 (x>0)$の表す図形を描け.
(3)$x>0$において,方程式$\log_2 x=-|\log_2 x|+2$を満たす$x$の値を求めよ.
(4)$n$を正の整数とし,$1<a<2$とする.数列$\{a_n\}$の第$n$項を求めよ.
(5)$n$を正の整数とする.$2^{2015}<a<2^{2016}$のとき,数列$\{a_n\}$の第$n$項を求めよ.
立教大学 私立 立教大学 2016年 第3問
放物線$C:y=x^2$と直線$\ell:y=kx+k (k>0)$に対し,放物線$C$と直線$\ell$の$2$個の交点を$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2) (a<b)$とする.さらに,点$\mathrm{A}$における放物線$C$の接線を$m_1$,点$\mathrm{B}$における放物線$C$の接線を$m_2$とする.このとき,次の問いに答えよ.

(1)直線$m_1$の方程式を$a$を用いて表せ.また,直線$m_2$の方程式を$b$を用いて表せ.
(2)$a$と$b$をそれぞれ$k$を用いて表せ.
(3)$2$つの直線$m_1$と$m_2$の交点を$\mathrm{D}(p,\ q)$とするとき,$p$と$q$のそれぞれを$k$を用いて表せ.
(4)放物線$C$と直線$\ell$で囲まれた図形の面積$T$を$k$を用いて表せ.
(5)$2$点$\mathrm{E}(a,\ q)$,$\mathrm{F}(b,\ q)$をとる.三角形$\mathrm{AED}$と三角形$\mathrm{BFD}$の面積の和$S$を$k$を用いて表せ.また$\displaystyle \frac{S}{T}$を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
$a$を正の実数,$b,\ c$を実数とする.$f(x)=ax^2+bx+c$とし,$f^\prime(x)$を$f(x)$の導関数とする.

(1)放物線$y=f(x)$と直線$y=f^\prime(x)$が接するための必要十分条件は
\[ b^2=[ウ] \qquad \cdots\cdots(\mathrm{A}) \]
である.
(2)条件$(\mathrm{A})$が成り立つとき,その接点の座標は
\[ \left( [$4$]-\frac{b}{[$5$]a},\ [$6$]a \right) \]
である.このとき,直線$y=f^\prime(x)$は放物線$y=-f(x)$とも接し,その接点$\mathrm{P}$の座標は
\[ \left( [$7$][$8$]-\frac{b}{[$9$]a},\ [$10$][$11$]a \right) \]
である.
(3)直線$y=f^\prime(x)$が原点を中心とする半径$\sqrt{2}$の円$\mathrm{O}$と接するための必要十分条件は
\[ b^2=[エ] \qquad \cdots\cdots(\mathrm{B}) \]
である.この条件が成り立つとき,その接点を$\mathrm{Q}$とする.
(4)条件$(\mathrm{A}),\ (\mathrm{B})$が成り立ち,さらに点$\mathrm{P}$が点$\mathrm{Q}$と一致するのは,
\[ a=\frac{[$12$]}{[$13$]},\quad b=[$14$][$15$],\quad c=\frac{[$16$]}{[$17$]} \]
のときである.このとき,円$\mathrm{O}$は放物線$y=f(x)$とただ$1$つの共有点$([$18$],\ [$19$])$をもち,放物線$y=f(x)$,直線$y=f^\prime(x)$および円$\mathrm{O}$で囲まれた図形の面積は
\[ \frac{[$20$]}{[$21$]}-\frac{[$22$]}{[$23$]} \pi \]
である.
慶應義塾大学 私立 慶應義塾大学 2016年 第3問
球面$S:x^2-8x+y^2-4y+z^2+6z+20=0$は点$\mathrm{A}([$24$],\ [$25$],\ [$26$])$で$xy$平面と接し,球面$S$と$zx$平面との交わりは中心$\mathrm{B}([$27$],\ [$28$],\ [$29$][$30$])$,半径$\sqrt{[$31$]}$の円である.

球面$S$の中心を$\mathrm{C}$,線分$\mathrm{AB}$を$\sqrt{3}:2$に外分する点を$\mathrm{P}$とすると,$\mathrm{P}$の座標は
\[ \left( [$32$],\ [$33$]+[$34$] \sqrt{[$35$]},\ [$36$]+[$37$] \sqrt{[$38$]} \right) \]
であり,$\displaystyle \angle \mathrm{ACP}=\frac{[$39$]}{[$40$]} \pi$(ただし$0 \leqq \angle \mathrm{ACP} \leqq \pi$)である.また,三角形$\mathrm{BPC}$の辺および内部が球面$S$と交わってできる図形は,長さ$\displaystyle \frac{[$41$]}{[$42$]} \pi$の円弧である.
慶應義塾大学 私立 慶應義塾大学 2016年 第5問
$1$辺の長さが$\sqrt{2}$の正方形$\mathrm{ABCD}$を底面とし,$4$つの正三角形を側面とする正四角錐$\mathrm{O}$-$\mathrm{ABCD}$がある.$\mathrm{OA}$と$\mathrm{OC}$を$4:1$に内分する点をそれぞれ$\mathrm{P}$と$\mathrm{R}$,正の実数$r$に対して$\mathrm{OB}$を$1:r$に内分する点を$\mathrm{Q}$とする.

(1)内積$\overrightarrow{\mathrm{PQ}} \cdot \overrightarrow{\mathrm{QR}}$と$\overrightarrow{\mathrm{PR}} \cdot \overrightarrow{\mathrm{OQ}}$を計算せよ.答が$r$の有理式になる場合は,$1$つの既約分数式で解答せよ.
(2)線分$\mathrm{PR}$の中点を$\mathrm{M}$とする.$\mathrm{QM}$と$\mathrm{OD}$が平行になる$r$を求めよ.
(3)$\mathrm{QM}$と$\mathrm{OD}$が平行なとき,$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面$\alpha$で正四角錐$\mathrm{O}$-$\mathrm{ABCD}$を$2$つの多面体に切り分ける.このとき,$\alpha$による切り口の図形の面積,および,切り分けたうち頂点$\mathrm{O}$を含む多面体の体積を求めよ.
スポンサーリンク

「図形」とは・・・

 まだこのタグの説明は執筆されていません。