タグ「図形」の検索結果

86ページ目:全857問中851問~860問を表示)
大阪府立大学 公立 大阪府立大学 2010年 第1問
$\displaystyle f(x)=\frac{4}{3+4x^2}$とする.次の問いに答えよ.

(1)直線$y=1$と曲線$y=f(x)$の交点のうち,$x$座標が正であるものをPとする.点Pにおける$y=f(x)$の接線の方程式を求めよ.
(2)直線$y=1$と曲線$y=f(x)$で囲まれた図形の面積を求めよ.
(3)直線$y=1$と曲線$y=f(x)$で囲まれた図形を$x$軸のまわりに1回転させてできる回転体の体積を求めよ.
兵庫県立大学 公立 兵庫県立大学 2010年 第5問
関数$f(x)$を次のように定める.
\[ f(x)=\sqrt{1-x}+\sqrt{1+x} \quad (-1 \leqq x \leqq 1) \]
このとき次の問いに答えよ.

(1)$x=-1,\ x=1,\ y=f(x)$と$x$軸とで囲まれた図形$D$の面積を求めよ.
(2)図形$D$を$x$軸のまわりに回転してできる図形の体積を求めよ.
県立広島大学 公立 県立広島大学 2010年 第4問
放物線$\displaystyle y=\frac{1}{2}x^2$について,次の問いに答えよ.

(1)点P$\displaystyle \left(1,\ \frac{1}{2} \right)$における接線$\ell_1$の方程式を求めよ.
(2)点Pを通り直線$\ell_1$に直交する直線を$\ell_2$とする.直線$\ell_2$と$x$軸との交点Aの座標を求めよ.
(3)点Aを中心とし,直線$\ell_1$に接する円の方程式を求めよ.
(4)(3)の円と$x$軸との交点のうち原点に近い方の点Bの座標を求めよ.
(5)放物線,円弧BPおよび$x$軸で囲まれた図形の面積を求めよ.
名古屋市立大学 公立 名古屋市立大学 2010年 第3問
次の問いに答えよ.

(1)方程式$x^2-xy-4x+2y+3=0$が表す曲線の概形を描け.その曲線が$x$軸および$y$軸と交差する場合にはその交点の座標を明記すること.また,漸近線が存在する場合には,その漸近線も描き,その式を明記すること.
(2)(1)で描かれた曲線と$x$軸および$y$軸で囲まれる図形をA,また(1)で描かれた曲線が$x$軸と$y$軸で交わる点を結んでできる図形をBとする.領域$A \cap B$の面積を求めよ.
高知工科大学 公立 高知工科大学 2010年 第1問
$\angle \mathrm{C}$を直角とし斜辺の長さが$1$である直角三角形$\mathrm{ABC}$において,$\angle \mathrm{A}=\theta$とする.辺$\mathrm{AC}$の中点を$\mathrm{M}$とし,線分$\mathrm{CM}$上に点$\mathrm{Q}$をとり,$\mathrm{CQ}=x$とする.点$\mathrm{Q}$を通り辺$\mathrm{BC}$に平行な直線と辺$\mathrm{AB}$との交点を$\mathrm{P}$とし,線分$\mathrm{PQ}$を折り目として,$\triangle \mathrm{APQ}$を元の三角形に折り重ねる.折り重ねた$\triangle \mathrm{A}^\prime \mathrm{PQ}$と$\triangle \mathrm{ABC}$が重なってできる図形の面積を$T$とする.次の各問に答えよ.

(1)線分$\mathrm{PQ}$の長さを$\theta$と$x$で表せ.
(2)面積$T$を$\theta$と$x$で表せ.
(3)面積$T$の値が最大となるときの$\triangle \mathrm{ABC}$の形状と点$\mathrm{Q}$の位置を求めよ.
(図は省略)
高知工科大学 公立 高知工科大学 2010年 第2問
$a,\ m$を正の定数とする.座標平面において,曲線$C:y=x^3-2ax^2+a^2x$と直線$\ell:y=m^2x$は,異なる$3$点を共有し,その$x$座標はいずれも負ではないとする.次の各問に答えよ.

(1)$m$の取り得る値の範囲を$a$で表せ.また,$C$と$\ell$の共有点の$x$座標を求めよ.
(2)$C$と$\ell$で囲まれた$2$つの図形の面積が等しいとき,$m$を$a$で表せ.
(3)(2)のとき,$2$つの図形の面積の和が$\displaystyle \frac{1}{2}$になるように$a$の値を定めよ.
高知工科大学 公立 高知工科大学 2010年 第3問
座標平面において,曲線$y=e^x$を$C$とし,点$(1,\ 0)$を$\mathrm{P}_1$,点$\mathrm{P}_1$を通り$x$軸に垂直な直線と$C$との交点を$\mathrm{Q}_1$とする.

点$\mathrm{Q}_1$における$C$の接線と$x$軸との交点を$\mathrm{P}_2$,点$\mathrm{P}_2$を通り$x$軸に垂直な直線と$C$との交点を$\mathrm{Q}_2$とする.さらに,点$\mathrm{Q}_2$における$C$の接線と$x$軸との交点を$\mathrm{P}_3$,点$\mathrm{P}_3$を通り$x$軸に垂直な直線と$C$との交点を$\mathrm{Q}_3$とする.
以下同様の操作を繰り返し,$x$軸上の点列$\mathrm{P}_1,\ \mathrm{P}_2,\ \mathrm{P}_3,\ \cdots$と曲線$C$上の点列$\mathrm{Q}_1,\ \mathrm{Q}_2,\ \mathrm{Q}_3,\ \cdots$を定める.
また,各自然数$n$について,曲線$C$と$2$つの線分$\mathrm{Q}_n \mathrm{P}_{n+1}$,$\mathrm{P}_{n+1} \mathrm{Q}_{n+1}$で囲まれた図形の面積を$S_n$として,数列
\[ S_1,\ S_2,\ \cdots,\ S_n,\ \cdots \]
を定める.次の各問に答えよ.


(1)$S_1$を求めよ.
(2)点$\mathrm{P}_n$の座標を求めよ.
(3)無限級数
\[ S_1+S_2+\cdots +S_n+\cdots \]
の和を求めよ.
スポンサーリンク

「図形」とは・・・

 まだこのタグの説明は執筆されていません。