タグ「図形」の検索結果

84ページ目:全857問中831問~840問を表示)
北海学園大学 私立 北海学園大学 2010年 第4問
曲線$C:y=e^{ax} (a \neq 0)$について次の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)$C$上の点$(t,\ e^{at})$における接線の方程式を求めよ.さらに,この接線が原点$\mathrm{O}$を通るとき,この接線を$\ell$と表す.接線$\ell$の方程式を求めよ.
(2)接線$\ell$,曲線$C$および$y$軸で囲まれた図形$D$の面積が$1$となるような$a$の値を求めよ.
(3)図形$D$を$x$軸のまわりに回転してできる立体の体積が$\pi$となるような$a$の値を求めよ.
北海学園大学 私立 北海学園大学 2010年 第3問
曲線$C:y=e^{ax} (a \neq 0)$について次の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)$C$上の点$(t,\ e^{at})$における接線の方程式を求めよ.さらに,この接線が原点$\mathrm{O}$を通るとき,この接線を$\ell$と表す.接線$\ell$の方程式を求めよ.
(2)接線$\ell$,曲線$C$および$y$軸で囲まれた図形$D$の面積が$1$となるような$a$の値を求めよ.
(3)図形$D$を$x$軸のまわりに回転してできる立体の体積が$\pi$となるような$a$の値を求めよ.
東北学院大学 私立 東北学院大学 2010年 第3問
$y=|x(x-2)|$で与えられる曲線について以下の問いに答えよ.

(1)この曲線のグラフを描け.
(2)この曲線と直線$y=mx$の共有点の個数を$m$の値で分類せよ.
(3)$(2)$の共有点が$3$個のとき,この曲線と直線で囲まれる$2$つの図形のうち原点を含む側の図形の面積を$S_1$とし,もう一方の面積を$S_2$とする.このとき
\[ S_2-S_1=\frac{11}{6} \]
となるような$m$の値を求めよ.
東北学院大学 私立 東北学院大学 2010年 第4問
$2$つの曲線$y=e \log x$,$y=ax^2$が共有点を持ち,その共有点における接線が一致するとき以下の問いに答えよ.ただし$e$は自然対数の底とする.

(1)定数$a$の値を求めよ.
(2)この$2$つの曲線と$x$軸で囲まれた図形の面積$S$を求めよ.
(3)$(2)$の図形を$y$軸の周りに$1$回転してできる回転体の体積$V$を求めよ.
龍谷大学 私立 龍谷大学 2010年 第3問
$x>0$の範囲で,関数
\[ f(x)=\frac{3}{x^2}-\frac{4}{x}+1 \]
を考える.

(1)曲線$y=f(x)$と$x$軸との交点の座標を求めなさい.
(2)$f(x)$の増減を調べなさい.
(3)曲線$y=f(x)$と$x$軸で囲まれた図形の面積を求めなさい.
南山大学 私立 南山大学 2010年 第1問
$[ ]$の中に答を入れよ.

(1)分数式$\displaystyle \frac{x^3+2x^2+4x-7}{x^2+2x-3}$を約分して既約分数にすると$[ア]$である.また,等式$ax(x-1)+b(x-1)(x-2)+c(x-3)=3x^2+2x+1$が$x$についての恒等式となるように$a,\ b,\ c$の値を定めると,$(a,\ b,\ c)=[イ]$である.
(2)$3^{30}$の桁数を求めると$[ウ]$である.また,$\displaystyle \left( \frac{1}{9} \right)^{40}$を小数で表すと小数第$n$位に初めて$0$でない数が現れ,$n=[エ]$である.ただし,$\log_{10}3=0.4771$とする.
(3)$2$次関数$f(x)=ax^2+bx+c$は$x=1$で最小値$-1$をとる.$f(x)=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\alpha^4+\beta^4$を$a$で表すと$\alpha^4+\beta^4=[オ]$である.また,$\alpha^4+\beta^4>6$を満たす$a$の値の範囲を求めると$[カ]$である.
(4)$a \geqq 0$とする.$2$点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(a,\ 3)$からの距離の比が$2:1$である点$\mathrm{P}$の描く図形の方程式は$[キ]$である.また,この図形が直線$y=x+2$と$2$つの共有点$\mathrm{C}$,$\mathrm{D}$をもち,線分$\mathrm{CD}$の長さが$2 \sqrt{2}$であるとき,$a$の値を求めると$a=[ク]$である.
南山大学 私立 南山大学 2010年 第2問
座標平面上に曲線$C:y=e^{-x}$があり,$C$上に点$\mathrm{P}(a,\ e^{-a})$がある.ただし$a \geqq 0$とする.

(1)$\mathrm{P}$における$C$の接線の方程式を求めよ.
(2)$(1)$の接線と$x$軸,$y$軸で囲まれた図形の面積$S$を$a$を用いて表せ.
(3)$a \geqq 0$における$(2)$の$S$の最大値と,そのときの$a$の値を求めよ.
西南学院大学 私立 西南学院大学 2010年 第5問
曲線$C:y=x |x-1|$と,直線$\ell:y=kx$に関して,次の問に答えよ.ただし,$k$は実数の定数とする.

(1)曲線$C$の概形を描け.
(2)曲線$C$と直線$\ell$が$x>0$で$2$つの交点を持つような$k$の範囲を求めよ.
(3)$k$が$(2)$で求めた範囲を動くとき,$C$と$\ell$によって囲まれる図形全体の面積を最小にする$k$の値を求めよ.
学習院大学 私立 学習院大学 2010年 第2問
第一象限内にあって$2$つの曲線
\[ y=x^2-1,\quad x^2+y^2+2 \sqrt{3}y-1=0 \]
と$2$つの直線
\[ y=3,\quad x=0 \]
とで囲まれる図形を$D$とする.

(1)$D$の面積を求めよ.
(2)$D$を$y$軸に関して$1$回転して得られる回転体の体積を求めよ.
獨協医科大学 私立 獨協医科大学 2010年 第4問
原点を$\mathrm{O}$とする座標平面上の動点$\mathrm{P}$の位置ベクトル$\overrightarrow{\mathrm{OP}}=(x,\ y)$が,時刻$t$の関数として,$x=e^{-2t} \cos 2\pi t$,$y=e^{-2t} \sin 2\pi t$で表されている.

(1)点$\mathrm{P}$の速度ベクトル$\displaystyle \overrightarrow{v}=\left( \frac{dx}{dt},\ \frac{dy}{dt} \right)$の大きさは,$|\overrightarrow{v}|=[ ] \sqrt{[ ]+\pi^2}e^{-2t}$である.
(2)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{v}$のなす角を$\alpha$とするとき,$\displaystyle \cos \alpha=\frac{[ ]}{\sqrt{[ ]+\pi^2}}$であり,これは時刻$t$によらない一定値である.
(3)$n$を自然数として,$t=n-1$から$t=n$までの間に点$\mathrm{P}$が動く道のり$S_n$は,
\[ S_n=\sqrt{[ ]+\pi^2} \left( e^{[ ]}-[ ] \right) e^{-2n} \]
である.また,$\displaystyle \sum_{n=1}^{\infty}S_n=\sqrt{[ ]+\pi^2}$である.
(4)$t=0$から$\displaystyle t=\frac{1}{4}$までの間に点$\mathrm{P}$がえがく曲線と,$x$軸,$y$軸とで囲まれる図形の面積$I$は,$\displaystyle I=\int_a^b y \, dx=\int_{\frac{1}{4}}^0 y \frac{dx}{dt} \, dt$で求められる.このとき$a=[ ]$,$b=[ ]$で,$\displaystyle I=\int_0^{\frac{1}{4}} e^{-4t} \{ \sin [$*$] \pi t+\pi (1-\cos [$*$] \pi t) \} \, dt$である.
スポンサーリンク

「図形」とは・・・

 まだこのタグの説明は執筆されていません。