タグ「図形」の検索結果

80ページ目:全857問中791問~800問を表示)
佐賀大学 国立 佐賀大学 2010年 第3問
放物線$y=-x^2+6x-7$を$C_1$とし,$C_1$の頂点をA,$C_1$上の点$(1,\ -2)$をBとする.点A,Bを通る直線を$\ell$とし,点A,Bを通る放物線$y=ax^2+bx+c$を$C_2$とする.ただし,$a,\ b,\ c$は実数,$a>0$である.このとき,次の問いに答えよ.

(1)点Aの座標を求めよ.
(2)直線$\ell$の方程式を求めよ.
(3)$b$と$c$を$a$を用いて表せ.
(4)$C_2$と$\ell$で囲まれた図形の面積を$a$を用いて表せ.
鳥取大学 国立 鳥取大学 2010年 第4問
関数$f(x)=xe^{-x}$について,次の問いに答えよ.

(1)関数$f(x)$の極値,グラフの凹凸,変曲点を調べ,$y=f(x)$のグラフをかけ.
(2)曲線$y=f(x)$の接線で,点$\displaystyle \left( -\frac{1}{2},\ 0 \right)$を通るものが2本あることを示し,それらの方程式を求めよ.
(3)(2)で求めた2本の接線と曲線$y=f(x)$で囲まれる図形の面積を求めよ.
鳥取大学 国立 鳥取大学 2010年 第3問
関数$f(x)=xe^{-x}$について,次の問いに答えよ.

(1)関数$f(x)$の極値,グラフの凹凸,変曲点を調べ,$y=f(x)$のグラフをかけ.
(2)曲線$y=f(x)$の接線で,点$\displaystyle \left( -\frac{1}{2},\ 0 \right)$を通るものが2本あることを示し,それらの方程式を求めよ.
(3)(2)で求めた2本の接線と曲線$y=f(x)$で囲まれる図形の面積を求めよ.
山形大学 国立 山形大学 2010年 第2問
$xy$平面上に直線$\ell:y=x+2$と曲線$C:y=1-x^2$がある.直線$\ell$上を動く点Pから曲線$C$に異なる2本の接線を引き,接点をQ,Rとする.線分QRの中点をMとするとき,次の問いに答えよ.

(1)点Pの$x$座標を$t$とし,2点Q,Rの$x$座標をそれぞれ$\alpha,\ \beta$とするとき,$\alpha+\beta=2t$および$\alpha\beta=-(t+1)$を示せ.
(2)点Mの軌跡は曲線$y=-2x^2-x$であることを示せ.
(3)点Mの軌跡と$x$軸で囲まれた図形の面積を求めよ.
電気通信大学 国立 電気通信大学 2010年 第1問
$n$を自然数とし,$x$を変数とする関数
\[ f_n(x)=(nx+n+1)e^x,\quad g_n(x)=(nx+n-1)e^{-x} \]
を考える.以下の問いに答えよ.

(1)$f_n(x)$の増減を調べ,極値を求めよ.
(2)$g_n(x)$の増減を調べ,極値を求めよ.
(3)$x$軸と$y$軸および曲線$y=f_n(x)$で囲まれた図形の面積$S_n$を求めよ.
(4)$x$軸と$y$軸および曲線$y=g_n(x)$で囲まれた図形の面積$T_n$を求めよ.ただし,$n \geqq 2$とする.
(5)極限値$\displaystyle \lim_{n \to \infty}\frac{T_n}{S_n}$を求めよ.
秋田大学 国立 秋田大学 2010年 第1問
$n$を自然数とするとき,次の問いに答えよ.

(1)不定積分$\displaystyle \int \pi (x+\pi) \sin \pi x \, dx$を求めよ.
(2)下の図のように,曲線$y = \pi(x+ \pi) \sin \pi x \ (0 \leqq x \leqq 2n-1)$と$x$軸とで囲まれた図形の$x$軸より上側にある部分を,原点側から順にP$_1$,P$_2$,P$_3$,$\cdots$,P$_n$と分けるとき,図形P$_k$の面積$S_k \ (k = 1,\ 2,\ 3,\ \cdots,\ n)$を$k$の式で表せ.
(図は省略)
(3)(2)の$S_k$に対して,$\displaystyle \sum_{k=1}^n S_k$を$n$の式で表せ.
佐賀大学 国立 佐賀大学 2010年 第4問
$e$は自然対数の底,$a,\ b,\ c$は実数である.放物線$y=ax^2+b$を$C_1$とし,曲線$y=c \log x$を$C_2$とする.$C_1$と$C_2$が点P$(e,\ e)$で接しているとき,次の問いに答えよ.ここで,2つの曲線が点Pで接しているとは,ともに点Pを通り,かつ,その点における接線が一致していることである.

(1)$a,\ b,\ c$の値を求めよ.
(2)$C_1,\ C_2$および$x$軸,$y$軸とで囲まれた図形の面積を求めよ.
宇都宮大学 国立 宇都宮大学 2010年 第6問
座標平面上に,点$(0,\ 1)$を中心とする半径$1$の円と点$\mathrm{P}(0,\ h) \ (0<h<2)$がある.点$\mathrm{P}$を通る直線$y=h$と円との交点で第$1$象限にあるものを$\mathrm{Q}$とする.曲線$C:y=\alpha x^2$は点$\mathrm{Q}$を通るとし,$y$軸と曲線$C$および線分$\mathrm{PQ}$で囲まれた部分を図形$\mathrm{A}$とする.次の問いに答えよ.

(1)$\alpha$を$h$を用いて表せ.
(2)図形$\mathrm{A}$の面積$S$を$h$の式で表し,$S$の最大値を求めよ.
(3)図形$\mathrm{A}$を$y$軸の周りに$1$回転してできる立体の体積$V$を$h$の式で表し,$V$の最大値を求めよ.
(4)$S,\ V$は,それぞれ(2),(3)で求めたものとする.$\displaystyle X=\frac{V}{2\pi S}$とおくとき,$X$の最大値を求めよ.
茨城大学 国立 茨城大学 2010年 第3問
点$\mathrm{O}$を原点とする座標平面上に$2$点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(1,\ -1)$がある.このとき,以下の各問に答えよ.

(1)実数$s,\ t$によって,$\overrightarrow{\mathrm{OP}}=s\overrightarrow{\mathrm{OA}}+t\overrightarrow{\mathrm{OB}}$で定められる点$\mathrm{P}$を考える.$s,\ t$が$s+2t \leqq 2$,$s \geqq 0$,$t \geqq 0$を満たしながら動くとき,点$\mathrm{P}$の存在する範囲を求めよ.さらに,その範囲が表す図形を図示せよ.
(2)実数$u$によって,$\overrightarrow{\mathrm{OQ}}=(1-u)\overrightarrow{\mathrm{QA}}+2u\overrightarrow{\mathrm{QB}}$で定められる点$\mathrm{Q}$を考える.$u$が$0 \leqq u \leqq 1$を満たしながら動くとき,点$\mathrm{Q}$の存在する範囲を求めよ.さらに,その範囲が表す図形を図示せよ.
(3)(1)で得られた図形が,(2)で得られた図形によって$2$つの図形に分割される.この$2$つの図形の面積をそれぞれ$S,\ T (S \leqq T)$とおくとき,$\displaystyle \frac{S}{T}$の値を求めよ.
山梨大学 国立 山梨大学 2010年 第3問
$2$つの関数$f(x)=x^3-6x^2+9x,\ g(x)=x^3-3x^2+3x-1$について,次の問いに答えよ.

(1)関数$f(x)$および$g(x)$の増減を調べ,曲線$y=f(x)$および$y=g(x)$を図示せよ.
(2)$2$つの曲線$y=f(x),\ y=g(x)$で囲まれた図形の面積を求めよ.
(3)(2)で面積を求めた図形と直線$y=4x+k$が共有点を持つとき,$k$の最小値を求めよ.
スポンサーリンク

「図形」とは・・・

 まだこのタグの説明は執筆されていません。