タグ「図形」の検索結果

76ページ目:全857問中751問~760問を表示)
山形大学 国立 山形大学 2010年 第1問
$xy$平面上に2つの曲線
\[ C_1:y=\sqrt{3}\sin x (0 \leqq x \leqq 2\pi), \quad C_2:y=\cos x (0 \leqq x \leqq 2\pi) \]
がある.このとき以下の問に答えよ.

(1)曲線$C_1,\ C_2$のグラフをかけ.
(2)$C_1$と$C_2$の交点の座標を求めよ.
(3)$C_1$と$C_2$で囲まれた図形の面積$S$を求めよ.
神戸大学 国立 神戸大学 2010年 第3問
$\displaystyle f(x) =\frac{\log x}{x},\ g(x) = \frac{2 \log x}{x^2} \ (x > 0)$とする.以下の問に答えよ.ただし,自然
対数の底$e$について,$e=2.718 \cdots$であること,$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}=0$であることを証明なしで用いてよい.

(1)2曲線$y = f(x)$と$y = g(x)$の共有点の座標をすべて求めよ.
(2)区間$x>0$において,関数$y = f(x)$と$y = g(x)$の増減,極値を調べ,2曲線$y = f(x),\ y = g(x)$のグラフの概形をかけ.グラフの変曲点は求めなくてよい.
(3)区間$1 \leqq x \leqq e$において,2曲線$y = f(x)$と$y = g(x)$,および直線$x = e$で囲まれた図形の面積を求めよ.
東北大学 国立 東北大学 2010年 第4問
四面体ABCDにおいて,辺AB の中点をM,辺CDの中点をNとする.以下の問いに答えよ.

(1)等式
\[ \overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}} = \overrightarrow{\mathrm{PC}}+ \overrightarrow{\mathrm{PD}} \]
を満たす点Pは存在するか.証明をつけて答えよ.
(2)点Qが等式
\[ |\overrightarrow{\mathrm{QA}}+\overrightarrow{\mathrm{QB}}| = |\overrightarrow{\mathrm{QC}}+\overrightarrow{\mathrm{QD}}| \]
を満たしながら動くとき,点Qが描く図形を求めよ.
(3)点Rが等式
\[ |\overrightarrow{\mathrm{RA}}|^2 + |\overrightarrow{\mathrm{RB}}|^2 = |\overrightarrow{\mathrm{RC}}|^2 + |\overrightarrow{\mathrm{RD}}|^2 \]
を満たしながら動くとき,内積$\overrightarrow{\mathrm{MN}} \cdot \overrightarrow{\mathrm{MR}}$はRのとり方によらず一定であることを示せ.
(4)(2)の点Qが描く図形と(3)の点Rが描く図形が一致するための必要十分条件は$|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{CD}}|$であることを示せ.
北海道大学 国立 北海道大学 2010年 第1問
$a$を正の実数とし,$2$つの放物線

$C_1:y=x^2$
$C_2:y=x^2-4ax+4a$

を考える.

(1)$C_1$と$C_2$の両方に接する直線$\ell$の方程式を求めよ.
(2)$2$つの放物線$C_1,\ C_2$と直線$\ell$で囲まれた図形の面積を求めよ.
北海道大学 国立 北海道大学 2010年 第1問
$a$を正の実数とし,$2$つの放物線

$C_1:y=x^2$
$C_2:y=x^2-4ax+4a$

を考える.

(1)$C_1$と$C_2$の両方に接する直線$\ell$の方程式を求めよ.
(2)$2$つの放物線$C_1,\ C_2$と直線$\ell$で囲まれた図形の面積を求めよ.
東北大学 国立 東北大学 2010年 第4問
四面体ABCDにおいて,辺AB の中点をM,辺CDの中点をNとする.以下の問いに答えよ.

(1)等式
\[ \overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}} = \overrightarrow{\mathrm{PC}}+ \overrightarrow{\mathrm{PD}} \]
を満たす点Pは存在するか.証明をつけて答えよ.
(2)点Qが等式
\[ |\overrightarrow{\mathrm{QA}}+\overrightarrow{\mathrm{QB}}| = |\overrightarrow{\mathrm{QC}}+\overrightarrow{\mathrm{QD}}| \]
を満たしながら動くとき,点Qが描く図形を求めよ.
(3)点Rが等式
\[ |\overrightarrow{\mathrm{RA}}|^2 + |\overrightarrow{\mathrm{RB}}|^2 = |\overrightarrow{\mathrm{RC}}|^2 + |\overrightarrow{\mathrm{RD}}|^2 \]
を満たしながら動くとき,内積$\overrightarrow{\mathrm{MN}} \cdot \overrightarrow{\mathrm{MR}}$はRのとり方によらず一定であることを示せ.
(4)(2)の点Qが描く図形と(3)の点Rが描く図形が一致するための必要十分条件は$|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{CD}}|$であることを示せ.
静岡大学 国立 静岡大学 2010年 第3問
$a>0$とする.放物線$\displaystyle C : y = \frac{a}{2}x^2$上の点P$\displaystyle \left(1,\ \frac{a}{2} \right)$を通り,Pを通る接線に直交する直線を$\ell$,$y$軸と$\ell$との交点をQとするとき,次の問いに答えよ.

(1)直線$\ell$の方程式を$a$を用いて表せ.
(2)線分PQ,$y$軸および放物線$C$で囲まれる図形の面積を$S_1$とする.$S_1$の値を最小にする$a$の値を求めよ.
(3)直線$\ell$,$y$軸,直線$x = -1$および放物線$C$で囲まれる図形の面積を$S_2$とする.$S_2 = 2S_1$となる$a$の値を求めよ.
金沢大学 国立 金沢大学 2010年 第2問
$a$を正の定数とする.2つの放物線$C_1:y=x^2$と$C_2:y=(x-2)^2+4a$の交点をPとする.次の問いに答えよ.

(1)放物線$C_1$上の点Q$(t,\ t^2)$における接線の方程式を求めよ.さらに,その接線のうち$C_2$に接するものを$\ell$とする.$\ell$の方程式を求めよ.
(2)点Pを通り$y$軸に平行な直線を$m$とする.$\ell$と$m$の交点をRとするとき,線分PRの長さを求めよ.
(3)直線$\ell,\ m$と放物線$C_1$で囲まれた図形の面積を求めよ.
埼玉大学 国立 埼玉大学 2010年 第4問
平面上を運動する点Pの時刻$t$における座標$(x,\ y)$が
\[ x=2t-t^2,\quad y=1-t^2 \quad (0 \leqq t \leqq 1) \]
で与えられている.このとき,点Pの描く曲線を$C$とおく.

(1)$0<t<1$の範囲で,点Pの速さ(速度の大きさ)が最小になる時刻$t$を求めよ.
(2)(1)で求めた時刻$t$に対応する$C$上の点における接線$\ell$の方程式を求めよ.
(3)接線$\ell$と曲線$C$は,接点以外に共有点を持たないことを示せ.
(4)曲線$C$,接線$\ell$および$y$軸で囲まれる図形の面積を求めよ.
弘前大学 国立 弘前大学 2010年 第3問
次の問いに答えよ.

(1)$y = x^2-2x+2$と$y = -x^2 +2| \, x \, |+12$のグラフを同一の座標平面にかけ.
(2)$y = x^2-2x+2$と$y = -x^2 +2| \, x \, |+12$で囲まれる図形の面積を求めよ.
スポンサーリンク

「図形」とは・・・

 まだこのタグの説明は執筆されていません。