タグ「図形」の検索結果

74ページ目:全857問中731問~740問を表示)
久留米大学 私立 久留米大学 2011年 第4問
整数$k$に対して,曲線$y=4e^{-x}$と$x$軸,および直線$x=k$と$x=k+1$とで囲まれた図形の面積を$S_k$とする.同じく,この図形を$x$軸のまわりに回転してできる立体の体積を$V_k$とする.このとき,$S_k=[$7$]$,$V_k=[$8$]$であり,無限級数$\displaystyle \sum_{n=1}^\infty S_n$は$[$9$]$に,$\displaystyle \sum_{n=1}^\infty V_n$は$[$10$]$に収束する.
福岡大学 私立 福岡大学 2011年 第3問
$f(x)=x+\sqrt{2} \sin x (0 \leqq x \leqq 2\pi)$とし,曲線$y=f(x)$を$C$とするとき,次の問いに答えよ.

(1)関数$f(x)$の極値を求めよ.
(2)曲線$C$と$x$軸および直線$x=2\pi$で囲まれた図形を$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
産業医科大学 私立 産業医科大学 2011年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.

(1)角$\theta$が$0^\circ \leqq \theta \leqq {90}^\circ$,$\displaystyle \tan \theta=\frac{4}{3}$を満たすとき,$\displaystyle \tan \frac{\theta}{2}$の値は$[ ]$である.
(2)$4$次方程式$2x^4+7x^3+4x^2+7x+2=0$の実数解のうち最大のものは$[ ]$である.
(3)数列の極限$\displaystyle \lim_{n \to \infty} \{ \sqrt[3]{(n^3-n^2)^2}-2n \sqrt[3]{n^3-n^2}+n^2 \}$の値は$[ ]$である.
(4)円$x^2-8x+y^2-8y+30=0$に接する傾き$1$の$2$つの直線を$\ell_1$,$\ell_2$とする.放物線$y=2x^2+3x-2$と$2$直線$\ell_1$,$\ell_2$によって囲まれる図形の面積は$[ ]$である.ただし,この図形は原点を含むものとする.
(5)$x$を正の実数とするとき,関数$\displaystyle y=\left( \frac{2}{x} \right)^x$の導関数$\displaystyle \frac{dy}{dx}$は$[ ]$である.
(6)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \sqrt{1-2 \sin 2x+3 \cos^2 x} \, dx$の値は$[ ]$である.
(7)バスケットボールのフリースローを,$\mathrm{A}$,$\mathrm{B}$の$2$人がそれぞれ$3$回ずつ試みて,成功した回数が多い方が勝ちとする.$\mathrm{A}$の成功率は$\displaystyle \frac{1}{2}$,$\mathrm{B}$の成功率は$\displaystyle \frac{2}{3}$であるとき,$\mathrm{A}$が勝つ確率は$[ ]$である.ただし,$\mathrm{A}$,$\mathrm{B}$の試行は独立な試行と考える.
(8)$0,\ 1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7$の数字が書かれた$8$枚のカードがある.カードをもとに戻すことなく,$1$枚ずつ$8$枚すべてを取り出し,左から順に横に一列に並べる.このとき,数字$k$のカードの左側に並んだ$k$より小さい数字のカードの枚数が$k-1$である確率は$[ ]$である.ただし,$k$は$1$から$7$までの整数のいずれかとする.
大阪薬科大学 私立 大阪薬科大学 2011年 第2問
次の問いに答えなさい.

原点を$\mathrm{O}$とする$xy$座標平面上に,$2$点$\mathrm{P}(1,\ 2)$,$\mathrm{Q}(2,\ 0)$がある.$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$を通る$2$次関数のグラフを$C$,また,$C$の$\mathrm{O}$における接線を$\ell$とする.

(1)$C$の方程式は,$y=[ ]$である.
(2)$C$と$x$軸で囲まれる図形の面積は$[ ]$である.
(3)$\ell$の方程式は,$y=[ ]$である.
(4)$\ell$と線分$\mathrm{OP}$のなす角を$\theta$とするとき,$\tan \theta=[ ]$である.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(5)$C$を$x$軸方向に$a$,$y$軸方向に$b$だけ平行移動して得られる曲線を$C^\prime$とする.$\ell$が$C^\prime$の接線であるとき,$a,\ b$が満たす条件を求めなさい.
京都薬科大学 私立 京都薬科大学 2011年 第3問
次の$[ ]$にあてはまる数または式を記入せよ.

$t>0$とする.放物線$y=x^2$上の点$\mathrm{P}(t,\ t^2)$における接線$\ell_1$と$x$軸との交点$\mathrm{A}$の$x$座標は$[ ]$である.原点$\mathrm{O}$および$2$点$\mathrm{P}$,$\mathrm{A}$を通る放物線の方程式は$y=[ ]x^2-[ ]x$であり,この放物線の原点における接線$\ell_2$の方程式は$y=-[ ]x$である.$2$直線$\ell_1$,$\ell_2$の交点の座標は$([ ],\ -[ ])$であり,放物線$y=x^2$と$2$直線$\ell_1$,$\ell_2$で囲まれた図形の面積は$[$*$]$である.
点$\mathrm{P}$を通り,$\ell_1$に垂直な直線$\ell_3$の方程式は$y=-[ ]x+[ ]$であり,$\ell_3$と$y$軸および曲線$y=x^2 (x \geqq 0)$で囲まれた図形の面積は$[$**$]$である.そして,$[$**$]:[$*$]=6:1$となるのは,$t=[ ]$のときである.
津田塾大学 私立 津田塾大学 2011年 第1問
次の問いに答えよ.

(1)$\displaystyle f(x)=e^{-x}+\int_0^x e^{-(x-t)} \sin t \, dt$とする.このとき,$f^\prime(x)+f(x)=\sin x$が成り立つことを示せ.
(2)座標空間において,原点$\mathrm{O}$と点$\mathrm{A}(1,\ 1,\ 1)$を通る直線を$\ell$とし,原点$\mathrm{O}$を通り直線$\ell$とのなす角が$\displaystyle \frac{\pi}{3}$である直線の$1$つを$m$とする.直線$m$を直線$\ell$のまわりに$1$回転してできる図形を$S$とする.点$\mathrm{P}(x,\ y,\ z)$が$S$上にあるならば,
\[ x^2+y^2+z^2+8xy+8yz+8zx=0 \]
が成り立つことを示せ.
津田塾大学 私立 津田塾大学 2011年 第3問
関数$y=x^2-x-4 |x-1|$のグラフを$C$とする.

(1)$C$と$2$つの点で接する直線$\ell$の式を求めよ.
(2)$C$と$\ell$を図示せよ.
(3)$C$と$\ell$で囲まれた図形の面積を求めよ.
津田塾大学 私立 津田塾大学 2011年 第3問
次の問に答えよ.

(1)不定積分$\displaystyle \int {(\log x)}^2 \, dx$を求めよ.
(2)関数$y=\log x$のグラフを$C$とする.$C$に接し,かつ原点を通る直線$\ell$の式を求めよ.
(3)$C$と$\ell$と$x$軸とで囲まれた図形を$x$軸のまわりに回転してできる立体の体積を求めよ.
愛知学院大学 私立 愛知学院大学 2011年 第3問
$2$つの曲線$y=|x^2-1|$,$\displaystyle y=\frac{1}{2}(x^3-x)$に囲まれた図形の面積を求めなさい.
首都大学東京 公立 首都大学東京 2011年 第1問
$k$を実数とし,曲線$C_1:y=1-x^2$と曲線$C_2:y=x^2-2kx+k^2$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるとする.以下の問いに答えなさい.

(1)$k$のとり得る値の範囲を求めなさい.
(2)$k$の値が変化するとき,線分$\mathrm{PQ}$の中点$\mathrm{R}$の軌跡を図示しなさい.
(3)$(2)$の軌跡と$C_1$で囲まれた図形の面積を求めなさい.
スポンサーリンク

「図形」とは・・・

 まだこのタグの説明は執筆されていません。