タグ「図形」の検索結果

73ページ目:全857問中721問~730問を表示)
日本女子大学 私立 日本女子大学 2011年 第4問
$a,\ b,\ c$を定数,$a>0$として,放物線$y=ax^2+bx+c$が直線$y=2x$と直線$y=-x$に接するとする.

(1)$b$の値を求めよ.
(2)$c$を$a$で表せ.
(3)この$2$直線と放物線で囲まれた図形の面積を$a$で表せ.
日本女子大学 私立 日本女子大学 2011年 第1問
曲線$y=e^x$を$C$とする.点$\mathrm{Q}_1$を$x$軸上に取る.点$\mathrm{Q}_1$を通り$y$軸と平行な直線を$\ell_1$とする.$\ell_1$が$C$と交わる点を$\mathrm{P}_1$とする.点$\mathrm{P}_1$における$C$の接線を$\ell_1^\prime$とする.$\ell_1^\prime$が$x$軸と交わる点を$\mathrm{Q}_2$とする.さらに,点$\mathrm{Q}_2$を通り$y$軸と平行な直線を$\ell_2$とする.$\ell_2$が$C$と交わる点を$\mathrm{P}_2$とする.点$\mathrm{P}_2$における$C$の接線を$\ell_2^\prime$とする.$\ell_2^\prime$が$x$軸と交わる点を$\mathrm{Q}_3$とする.これを続けて,$C$上の点$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$,$\mathrm{P}_n$,$\cdots$と$x$軸上の点$\mathrm{Q}_1$,$\mathrm{Q}_2$,$\cdots$,$\mathrm{Q}_n$,$\cdots$を決める.$\mathrm{P}_1$の座標を$(a,\ e^a)$とするとき,次の問いに答えよ.

(1)$\mathrm{Q}_n$の$x$座標を求めよ.
(2)$C$と直線$\ell_n^\prime$および$\ell_{n+1}$で囲まれた図形の面積を$s_n$とするとき,無限級数$s_1+s_2+\cdots +s_n+\cdots$の和を求めよ.
関西大学 私立 関西大学 2011年 第3問
$f(x)=2x+3+|x|$と$g(x)=ax^2+bx+c$とは次の$2$つの条件を満たす.ただし,$a,\ b,\ c$は定数とする.

(i) $y=f(x)$のグラフと$y=g(x)$のグラフとは$x=-2$および$x=2$で交わる.
(ii) $y=g(x)$は$\displaystyle x=\frac{1}{2}$において最大値をとる.

このとき,次の$[ ]$を数値でうめよ.

(1)$a=[$①$]$,$b=[$②$]$,$c=[$③$]$である.
(2)$y=g(x)$のグラフの頂点の$y$座標は$[$④$]$である.
(3)$y=f(x)$と$y=g(x)$とで囲まれた図形の面積は$[$⑤$]$である.
関西大学 私立 関西大学 2011年 第1問
$a$を正の定数とする.座標平面上に曲線$C_1:y=ax^2$と曲線$C_2:x=y^2$がある.次の問いに答えよ.

(1)曲線$C_1$と$C_2$の交点のうち,原点と異なる点の座標を求めよ.
(2)曲線$C_1$と$C_2$で囲まれた図形を$D$とする.$D$を$x$軸のまわりに$1$回転してできる回転体の体積を$V_1$とする.また,$D$を$y$軸のまわりに$1$回転してできる回転体の体積を$V_2$とする.$V_1$と$V_2$をそれぞれ$a$を用いて表せ.
(3)$(2)$で求めた$V_1$と$V_2$について,$V_1 \geqq V_2$となるような$a$の値の範囲を求めよ.また,$V_1-V_2$を最大にする$a$の値を求めよ.
神奈川大学 私立 神奈川大学 2011年 第2問
曲線$\displaystyle C:y=\frac{1}{x} (x>0)$上の点$\displaystyle \mathrm{P} \left( p,\ \frac{1}{p} \right)$における接線を$\ell$とする.接線$\ell$と$x$軸との交点を$\mathrm{Q}$とする.さらに,$\mathrm{Q}$を通り$x$軸に垂直な直線と曲線$C$との交点を$\mathrm{R}$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)接線$\ell$と$x$軸および$y$軸とで囲まれた図形の面積を求めよ.
(3)曲線$C$と接線$\ell$および線分$\mathrm{QR}$とで囲まれた図形の面積を求めよ.
広島修道大学 私立 広島修道大学 2011年 第1問
次の各問に答えよ.

(1)女子$5$人,男子$3$人が横$1$列に並ぶとき,女子が両端にくるような並び方は何通りあるか.また,女子$5$人が続いて並ぶような並び方は何通りあるか.
(2)放物線$y=x^2+ax+b$は$2$点$\mathrm{A}(0,\ -3)$,$\mathrm{B}(2,\ 5)$を通る.このとき,この放物線と$2$点$\mathrm{B}$,$\mathrm{C}(-2,\ -3)$を通る直線で囲まれた図形の面積を求めよ.
(3)$0 \leqq x \leqq \pi$のとき,方程式$8 \cos^4 x-16 \cos^2 x-6 \sin^2 x+9=0$を解け.
広島修道大学 私立 広島修道大学 2011年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)不等式$2x-5 \leqq -x+10$の解は$[$1$]$である.
(2)整式$f(x)$を$x+2$で割ると余りは$-3$,$x-3$で割ると余りは$1$,$x+4$で割ると余りは$2$である.このとき,整式$f(x)$を$(x+2)(x-3)$で割ると余りは$[$2$]$,$(x-3)(x+4)$で割ると余りは$[$3$]$である.
(3)$2$次不等式$\displaystyle x^2+3x-\frac{3}{4} \leqq 1$の解は$[$4$]$であり,連立不等式
\[ \left\{ \begin{array}{l}
x^2+3x-\displaystyle \frac{3}{4} \leqq 1 \\
-x^2+4>0 \phantom{\displaystyle \Biggl( \frac{1}{2} \Biggr)}
\end{array} \right. \]
の解は$[$5$]$である.
(4)放物線$y=-x^2+2x+1$を$C$とし,$C$上の点$\mathrm{P}(2,\ 1)$における接線を$\ell$とすると,直線$\ell$の方程式は$[$6$]$である.また,直線$\ell$と放物線$C$および$y$軸で囲まれた図形の面積は$[$7$]$である.
(5)$16$本のくじの中に,当たりくじが$4$本ある.このくじを$\mathrm{A}$,$\mathrm{B}$の$2$人がこの順に,$1$本ずつ$1$回だけ引き,引いたくじはもとに戻さないものとするとき,$\mathrm{A}$の当たる確率は$[$8$]$となり,$\mathrm{B}$の当たる確率は$[$9$]$となる.
(6)$x$についての不等式$\log_a(3x^2-x-2)>\log_a(x^2+5x-6)$の解は,$a>1$のとき$[$10$]$であり,$0<a<1$のとき$[$11$]$である.
広島修道大学 私立 広島修道大学 2011年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)連立不等式
\[ \left\{ \begin{array}{l}
x-2>0 \\
2x-6 \leqq 0
\end{array} \right. \]
の解は$[$1$]$である.
(2)$x^3-4x^2+5x+2$を$x-4$で割った余りは$[$2$]$である.
(3)$f(x)=x^2+ax+b,\ g(x)=x^2+2ax+b$とする.放物線$y=g(x)$の頂点の座標が$\displaystyle \left( \frac{8}{3},\ \frac{26}{9} \right)$であるとき,$a=[$3$]$,$b=[$4$]$である.また,$2$つの放物線$y=f(x)$,$y=g(x)$および直線$x=\sqrt{3}$で囲まれた図形の面積は$[$5$]$である.
(4)$\triangle \mathrm{ABC}$において$\displaystyle \angle \mathrm{B}=\frac{\pi}{12}$,$\mathrm{BC}=1$,$\mathrm{AB}=2$のとき,$\mathrm{AC}^2=[$6$]$,$\sin^2 A=[$7$]$である.
(5)$2$次方程式$3x^2+2x+15=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\alpha^2+\beta^2=[$8$]$,$\displaystyle \frac{\alpha+i \beta}{\alpha-i \beta}-\frac{\alpha-i \beta}{\alpha+i \beta}=[$9$]$である.
(6)$1$から$15$までの異なる$15$個の自然数の中から,$4$個の異なる数をとって組を作る.このとき,偶数だけからなる組は$[$10$]$通りあり,偶数を少なくとも$1$個含む組は$[$11$]$通りある.
北海道医療大学 私立 北海道医療大学 2011年 第3問
関数$f(x)=-x^2+4x-3$と$g(x)=kx-3$がある.ただし,$k$は定数で,$k<4$とする.また,座標平面上の放物線$y=f(x)$と$x$軸の共有点の$x$座標を,$a_1,\ a_2$とし(ただし,$a_1<a_2$とする),放物線$y=f(x)$と直線$y=g(x)$の共有点の$x$座標を$b_1,\ b_2$とする(ただし,$b_1<b_2$とする).以下の問に答えよ.

(1)$a_1,\ a_2,\ b_1,\ b_2$の値を求めよ.
(2)点$(0,\ f(0))$における$y=f(x)$の接線の方程式を求めよ.
(3)次の図形の面積を求めよ.

\mon[$①$] 放物線$y=f(x)$と$x$軸とで囲まれる図形
\mon[$②$] 放物線$y=f(x)$と直線$y=g(x)$とで囲まれる図形

(4)次の定積分の値を求めよ.
\[ ① \int_{b_1}^{a_2} f(x) \, dx \qquad ② \int_{b_2}^{a_2} f(x) \, dx \]
(5)$\displaystyle \int_{b_2}^{a_2} f(x) \, dx=\frac{2}{3}$となるような$k$の値をすべて求めよ.
東北工業大学 私立 東北工業大学 2011年 第4問
$2$つの放物線$y=x^2-4x+2$と$y=-x^2+6x-6$がある.

(1)これらの放物線の交点の座標は$([ ],\ -1)$と$([ ],\ [ ])$である.
(2)これらの放物線によって囲まれた図形の面積$S_1$は$S_1=[ ]$である.
(3)$x \geqq 0$の範囲で,これらの放物線と$y$軸によって囲まれた図形の面積$S_2$は$\displaystyle S_2=\frac{[ ]}{3}$である.
スポンサーリンク

「図形」とは・・・

 まだこのタグの説明は執筆されていません。