タグ「図形」の検索結果

69ページ目:全857問中681問~690問を表示)
茨城大学 国立 茨城大学 2011年 第1問
$f(x)=e^{-x^2} \ (x \geqq 0)$とする.以下の各問に答えよ.

(1)$x \geqq 0$に対して,不等式$e^x>x$および$\displaystyle e^x>\frac{x^2}{2}$が成り立つことを示せ.
(2)$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}=0$および$\displaystyle \lim_{t \to +0} t \log \frac{1}{t}=0$を示せ.
(3)$f(x)$は減少関数であることを示せ.また,$y = f(x)$の逆関数$x = g(y)$を求めよ.
(4)$a$を$0<a<1$を満たす実数とする.$y$軸,$y= f(x)$のグラフおよび直線$y = a$で囲まれた図形を$y$軸のまわりに1回転してできる回転体の体積$V(a)$を求めよ.
(5)(4)で求めた$V(a)$に対し$\displaystyle \lim_{a \to +0}V(a)$を求めよ.
茨城大学 国立 茨城大学 2011年 第3問
点Aを$(-2,\ 0)$,点Eを$(2,\ 0)$とする.3つの点B,C,Dは,$\text{AB}=\text{BC}=\text{CD}=\text{DE}$を満たし,かつ,直線ABと直線CDが直角に交わり,直線BCと直線DEが直角に交わる.点B,C,Dの位置を調べるために,$\overrightarrow{\mathrm{BS}}=\overrightarrow{\mathrm{CD}}$となるような点Sをとる.点Sの$y$座標を$s$とする.以下の各問に答えよ.

(1)ASとESの長さを比較し,点Sが満たす条件を求めよ.
(2)点Bが直線ASの上側にある場合を考える.$\overrightarrow{\mathrm{SB}}$と点Bの座標を$s$で表せ.$s$が変化するときに点Bが描く図形は何か.
(3)点Dが直線ESの上側にある場合を考える.$\overrightarrow{\mathrm{SD}}$と点Dの座標を$s$で表せ.$s$が変化するときに点Dが描く図形は何か.
(4)(2)かつ(3)の場合に点Cの座標を$s$で表せ.$s$が変化するときに点Cが描く図形は何か.
(5)(2)かつ(3)の場合で,5つの点A,B,C,D,Eが同一円周上ににあるような点B,C,Dの位置の組み合わせをすべて求めよ.
山形大学 国立 山形大学 2011年 第3問
正の定数$k$に対し,曲線$y=kx^2$を$C$とする.この曲線$C$を用いて,数列$\{a_n\}$を次のように定める.

\mon[(1)] $a_1>0$
\mon[(ii)] $n=1,\ 2,\ 3,\ \cdots$に対し,点P$_n (a_n,\ k(a_n)^2)$における曲線$C$の接線と$x$軸との交点の$x$座標を$a_{n+1}$とする.

このとき,次の問に答えよ.

(1)曲線$C$上の点P$_1$における接線の方程式を求めよ.
(2)$a_2$を$a_1$で表せ.
(3)$a_n$を$a_1$で表せ.
(4)曲線$C$,$x$軸,直線$x=a_n$,$x=a_{n+1}$で囲まれた図形の面積を$S_n$とする.$S_n$を$a_1$で表せ.
(5)$T_n=S_1+S_3+\cdots +S_{2n-1}$とする.$T_{n}$を$a_1$で表せ.
(6)$U_n=S_2+S_4+\cdots +S_{2n}$とする.$\displaystyle \frac{U_n}{T_n}$を求めよ.
新潟大学 国立 新潟大学 2011年 第3問
$xy$平面上の3点をO$(0,\ 0)$,A$(4,\ 0)$,B$(3,\ 3)$とする.2点O,Aを通る放物線を$y=-ax^2+bx$とする.ただし,$a>0$とする.このとき,次の問いに答えよ.

(1)$b$を$a$の式で表せ.
(2)$y=-ax^2+bx$と$x$軸とで囲まれた図形が,$\triangle$OABに含まれるような,$a$の値の範囲を求めよ.
(3)$y=-ax^2+bx$と$x$軸とで囲まれた図形の面積が$\triangle$OABの面積の$\displaystyle \frac{1}{3}$となるとき,$a$の値を求めよ.
山形大学 国立 山形大学 2011年 第2問
媒介変数$t$を用いて$x=t^2,\ y=t^3$と表される曲線を$C$とする.ただし,$t$は実数全体を動くとする.また,実数$a \ (a \neq 0)$に対して,点$(a^2,\ a^3)$における$C$の接線を$\ell_a$とする.このとき,次の問に答えよ.

(1)$\ell_a$の方程式を求めよ.
(2)曲線$C$の$0 \leqq t \leqq 1$に対応する部分の長さを求めよ.ただし,曲線$x=f(t),\ y=g(t)$の$\alpha \leqq t \leqq \beta$に対応する部分の長さは$\displaystyle \int_{\alpha}^{\beta}\sqrt{\left( \frac{dx}{dt} \right)^2+\left( \frac{dy}{dt} \right)^2} \, dt$であたえられる.
(3)曲線$C$と直線$\ell_1$で囲まれた図形の面積を求めよ.
(4)曲線$C$と直線$\ell_1$で囲まれた図形を$y$軸の周りに1回転してできる回転体の体積を求めよ.
奈良教育大学 国立 奈良教育大学 2011年 第4問
$e$を自然対数の底とする.関数$f(x)$を$f(x)=\log (e-x) \ (x<e)$とする.このとき,以下の設問に答えよ.

(1)曲線$y=f(x)$と$x$軸との交点を求めよ.
(2)曲線$y=f(x)$と$y$軸との交点をPとする.点Pにおける曲線$y=f(x)$の接線を$\ell$とする.直線$\ell$の方程式を求めよ.
(3)曲線$y=f(x)$と直線$\ell$のグラフを描け.
(4)曲線$y=f(x)$と直線$\ell$および$x$軸によって囲まれた図形を$y$軸のまわりに1回転してできる立体の体積を求めよ.
大阪教育大学 国立 大阪教育大学 2011年 第3問
座標平面上の円$x^2+y^2=1$を$C$とする.点Pが行列$A=\biggl( \begin{array}{cc}
1 & 1 \\
1 & 0
\end{array} \biggr)$で表される1次変換で点Qに移されるとき,次の問に答えよ.

(1)点Pが円$C$上を動くとき,点Qの軌跡を求め,図示せよ.
(2)(1)で求めた曲線で囲まれた図形の面積$S$を求めよ.
山形大学 国立 山形大学 2011年 第4問
媒介変数$t$を用いて$x=t^2,\ y=t^3$と表される曲線を$C$とする.ただし,$t$は実数全体を動くとする.また,実数$a \ (a \neq 0)$に対して,点$(a^2,\ a^3)$における$C$の接線を$\ell_a$とする.このとき,次の問に答えよ.

(1)$\ell_a$の方程式を求めよ.
(2)曲線$C$の$0 \leqq t \leqq 1$に対応する部分の長さを求めよ.ただし,曲線$x=f(t),\ y=g(t)$の$\alpha \leqq t \leqq \beta$に対応する部分の長さは$\displaystyle \int_{\alpha}^{\beta}\sqrt{\left( \frac{dx}{dt} \right)^2+\left( \frac{dy}{dt} \right)^2} \, dt$であたえられる.
(3)曲線$C$と直線$\ell_1$で囲まれた図形の面積を求めよ.
(4)曲線$C$と直線$\ell_1$で囲まれた図形を$y$軸の周りに$1$回転してできる回転体の体積を求めよ.
小樽商科大学 国立 小樽商科大学 2011年 第1問
次の[ ]の中を適当に補いなさい.

(1)$\displaystyle \left( \frac{81}{80} \right)^{2011}$の整数部分の桁数は[ ]桁である.ただし,$\log_{10}2=0.30103,\ \log_{10}3=0.47712$とする.
(2)$y=|x|+|x-1|$と$y=x+2$で囲まれた図形の面積は[ ].
(3)$\displaystyle 16 \sum_{k=1}^n k=5200$のとき,$n=[ ]$.
小樽商科大学 国立 小樽商科大学 2011年 第3問
次の[ ]の中を適当に補いなさい.

(1)$m>0$とする.放物線$y=x^2$と放物線$y=x(m-x)$とで囲まれた図形の面積$S$を$m$で表せば,$S=[ ]$.
(2)$\cos 2\theta-\cos \theta+1$の最大値を$M$,最小値を$m$とすれば,$(M,\ m)=[ ]$.
(3)10段の階段を1段ずつ,1段飛ばし,2段飛ばしの3種類の登り方を自由に使って登ることができるものとする.このとき,10段を登る方法は全部で[ ]通りある.
スポンサーリンク

「図形」とは・・・

 まだこのタグの説明は執筆されていません。