タグ「図形」の検索結果

59ページ目:全857問中581問~590問を表示)
茨城大学 国立 茨城大学 2012年 第4問
点$\mathrm{O}$を座標平面の原点とする.$a,\ b$を正の実数とする.放物線$C_1:y=ax^2$と放物線$\displaystyle C_2:y=-(x-b)^2+\frac{5}{16}$は,共に,点$\mathrm{P}(x_0,\ y_0)$において直線$\ell$に接しているとする.直線$\ell$と$x$軸との交点を$\mathrm{Q}$とし,$\mathrm{R}(x_0,\ 0)$とする.次の各問に答えよ.

(1)$a,\ b$の条件を求めよ.
(2)線分の長さの比$\mathrm{OQ}:\mathrm{QR}$を求めよ.
(3)$\displaystyle a=\frac{1}{4}$とする.$x$軸と$C_1$と$x \leqq x_0$の部分の$C_2$とで囲まれる図形の面積を求めよ.
山口大学 国立 山口大学 2012年 第3問
$a<b$とする.放物線$C:y=x^2$上の点$\mathrm{A}(a,\ a^2)$における接線を$\ell_1$とし,点$\mathrm{B}(b,\ b^2)$における接線を$\ell_2$とする.$\ell_1$と$\ell_2$の交点を$\mathrm{P}$とするとき,次の問いに答えなさい.

(1)$\mathrm{P}$の座標を$a,\ b$を用いて表しなさい.
(2)$\mathrm{P}$の$x$座標を$p$とし,点$\mathrm{D}(p,\ p^2)$における放物線$C$の接線を$\ell_3$とする.$\ell_1$と$\ell_3$の交点を$\mathrm{Q}$,$\ell_2$と$\ell_3$の交点を$\mathrm{R}$とするとき,$\displaystyle \frac{\mathrm{AB}}{\mathrm{QR}}$を求めなさい.
(3)放物線$C$と線分$\mathrm{AB}$で囲まれた図形の面積を$S_1$,三角形$\mathrm{PQR}$の面積を$S_2$とする.$\displaystyle \frac{S_2}{S_1}$を求めなさい.
早稲田大学 私立 早稲田大学 2012年 第5問
$xy$平面上に$2$点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$をとる.$\displaystyle\frac{\pi}{4} \leqq \angle\mathrm{APB} \leqq \pi$をみたす平面上の点$\mathrm{P}$の全体と点$\mathrm{A}$,$\mathrm{B}$からなる図形を$F$とする.つぎの問に答えよ.

(1)$F$を図示せよ.
(2)$F$を$x$軸のまわりに$1$回転して得られる立体の体積を求めよ.
早稲田大学 私立 早稲田大学 2012年 第3問
次の問いに答えよ.

(1)整数$x,\ y$が$x^2-23y^2=1$を満たすとき,次の問いに答えよ.

(2)$1<x+\sqrt{23}y<49$のとき,$x=[ケ]$,$y=[コ]$である.
(3)$1$より小なる$x+\sqrt{23}y$が最大になるのは$x=[サ]$,$y=[シ]$のときである.

(4)曲線$y=x^2$,$x$軸,および直線$x=1$で囲まれた図形の面積を$S$とする.この図形の面積の近似値を以下の方法を用いて求める.区間$0 \leqq x \leqq 1$を$n$等分し,$i (1 \leqq i \leqq n)$番目の区間$\displaystyle\frac{(i-1)}{n} \leqq x \leqq \frac{i}{n}$を底辺とする高さ$\displaystyle \left( \frac{i-\displaystyle\frac{1}{2}}{n} \right)^2$の長方形を考える.これらの長方形の面積の$i$についての総和を$S_n$とする.

(i) $S_n=[ス]$である.
(ii) $\displaystyle |S-S_n| \leq \frac{1}{30000}$となる$n$の最小値は$[セ]$である.
上智大学 私立 上智大学 2012年 第2問
$a,\ b$を実数とし,$C_1,\ C_2$をそれぞれ次の$2$次関数のグラフとする.
\[ C_1: y=x^2, \quad C_2: y=-(x-a)^2+2a+b \]

(1)$C_1$と$C_2$が共有点をもつための条件を$a$と$b$で表すと
\[ a^2+[タ]a+[チ]b \leqq 0 \]
となる.特に$b$のとりうる値の範囲は$b \geqq [ツ]$であり,$b=[ツ]$のとき$C_1$と$C_2$はただ$1$つの共有点$\left( [テ],\ [ト] \right)$をもつ.
(2)$b=6$とし,$C_1$と$C_2$は共有点をもつとすると,
\[ [ナ] \leqq a \leqq [ニ] \]
である.このとき,$C_1$と$C_2$で囲まれた図形を$D$とすると,$D$の面積$S$は
\[ S=\frac{1}{3} \left( [ヌ]a^2+[ネ]a+[ノ] \right)^{\frac{3}{2}} \]
と表される.$a=[ハ]$のとき$S$は最大値$\displaystyle \frac{[ヒ]}{[フ]}$をとる.
(3)$a=[ハ]$,$b=6$とし,$C_1$と$C_2$で囲まれた図形を$D_0$とする.点$\mathrm{P}(x,\ y)$が$D_0$内を動くとき,$x+2y$の最大値は$\displaystyle \frac{[ヘ]}{[ホ]}$,最小値は$\displaystyle \frac{[マ]}{[ミ]}$である.
上智大学 私立 上智大学 2012年 第2問
$a$を実数とする.座標平面において,放物線$C_a$
\[ C_a:y=-2x^2+4ax-2a^2+a+1 \]
および放物線$C$
\[ C:y=x^2-2x \]
を考える.

(1)$C_a$の頂点は常に直線$y=[ク]x+[ケ]$上にある.
(2)$C_a$と$C$が共有点をもつための必要十分条件は,
\[ \frac{[コ]}{[サ]} \leqq a \leqq [シ] \]
である.
(3)$\displaystyle a=\frac{[コ]}{[サ]}$のとき,$C_a$と$C$の共有点は$\mathrm{P}([ス],\ [セ])$である.

(4)$a=[シ]$のとき,$C_a$と$C$の共有点は$\mathrm{Q}([ソ],\ [タ])$である.

(5)$C$と直線$\mathrm{PQ}$で囲まれる図形の面積は$\displaystyle \frac{[チ]}{[ツ]}$である.
(6)$\displaystyle \frac{[コ]}{[サ]}<a<[シ]$の場合,$C_a$と$C$で囲まれる図形の面積は,$\displaystyle a=\frac{[テ]}{[ト]}$のとき最大値$\displaystyle \frac{[ナ]}{[ニ]} \sqrt{[ヌ]}$をとる.
法政大学 私立 法政大学 2012年 第3問
関数$y=x^3-(a+2)x+a^2-2a$とそのグラフ$C_a$に対して,次の問いに答えよ.ただし,$a \geqq 1$とする.

(1)$C_a$と直線$x=1$との交点の座標を$(1,\ t)$とするとき,$a$の変化に応じて$t$のとり得る値の範囲を求めよ.
(2)この関数が$x=\sqrt{2}$で極値をとるとき,$a$の値および極大値,極小値を求めよ.
(3)$a=1$としたときのグラフを$C_1$とする.2つのグラフ$C_a$と$C_1$および$y$軸とで囲まれた図形の面積が4となるとき,$a$の値を求めよ.
明治大学 私立 明治大学 2012年 第4問
次の空欄$[ア]$から$[ク]$に当てはまるものをそれぞれ答えよ.

放物線$\displaystyle C_1:y=\frac{x^2}{8}+4$と楕円$\displaystyle C_2:x^2+\frac{y^2}{4}=2$を考える.

$C_1$上の点$(4a,\ 2a^2+4)$での接線の方程式は
\[ y= [ア]x-[イ] \]
である.$C_1$上の点$(4a,\ 2a^2+4)$における接線が同時に$C_2$の接線でもあるような$a$の値は全部で$4$個ある.それらを小さい方から順に$a_1,\ a_2,\ a_3,\ a_4$とすれば,$a_1=[ウ],\ a_2=[エ]$である.$C_2$の囲む図形の面積は$[オ]$である.点$(4a_1,\ 2{a_1}^2+4)$における$C_1$の接線を$y=f(x)$,点$(4a_4,\ 2{a_4}^2+4)$における$C_1$の接線を$y=g(x)$とする.このとき,$y=g(x)$と$C_2$の接点は$([カ],\ [キ])$である.$6$つの不等式

$\displaystyle y \geqq f(x),\quad y \geqq g(x),\quad x^2+\frac{y^2}{4} \geqq 2,\quad y \leqq \frac{x^2}{8}+4,$
$4a_1 \leqq x \leqq 4a_4,\quad [キ] \leqq y$

を同時にみたす領域の面積は$[ク]-3\pi$である.
川崎医療福祉大学 私立 川崎医療福祉大学 2012年 第1問
次の問に答えなさい.

(1)式$8x^2-2x-15$を因数分解すると,
\[ ([$1$]x-[$2$])([$3$]x+[$4$]) \]
となる.
(2)$x$に関する$2$次方程式$2x^2-(2m-3)x-3m=0$が重解を持つとき,$m=[$5$]$である.
(3)$\displaystyle \frac{\sqrt{6}}{\displaystyle\frac{1}{\sqrt{2}}+\displaystyle\frac{1}{\sqrt{3}}} = [$6$] (\sqrt{[$7$]} - \sqrt{[$8$]})$である.

(4)$\displaystyle \frac{3\sqrt{2}-4\sqrt{3}}{\sqrt{2}}$より大きい整数のうち,最小の整数は[$9$]である.
(5)$4$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$を頂点とする長方形の辺$\mathrm{AB}$の長さを$a$とする.さらに$4$点$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$があり,$4$つの三角形$\mathrm{ABE}$,三角形$\mathrm{BCF}$,三角形$\mathrm{CDG}$,三角形$\mathrm{DAH}$はすべて長方形$\mathrm{ABCD}$の外側にある正三角形であるとする.このとき,点$\mathrm{A}$,$\mathrm{E}$,$\mathrm{B}$,$\mathrm{F}$,$\mathrm{C}$,$\mathrm{G}$,$\mathrm{D}$,$\mathrm{H}$,$\mathrm{A}$をこの順に線分で結んでできる図形の周の長さを$L$とする.\\
\quad $L$を一定とするとき,長方形$\mathrm{ABCD}$の面積が最大になるのは$a=[$10$]$のときで,そのときの長方形$\mathrm{ABCD}$の面積は[$11$]である.
北海学園大学 私立 北海学園大学 2012年 第4問
$2$つの関数$f(x)=2x^3+6x^2+k$と$g(x)=4x^2+1$がある.曲線$y=f(x)$と放物線$y=g(x)$は,ともに異なる$2$点$\mathrm{A}(0,\ a)$,$\mathrm{B}(b,\ c)$を通る.ただし,$k,\ a,\ b,\ c$は定数とする.

(1)$k,\ a,\ b,\ c$の値をそれぞれ求めよ.
(2)$f(x)$の極値を求めよ.
(3)放物線$y=g(x)$と直線$\mathrm{AB}$で囲まれた図形の面積$S$を求めよ.
スポンサーリンク

「図形」とは・・・

 まだこのタグの説明は執筆されていません。