タグ「図形」の検索結果

43ページ目:全857問中421問~430問を表示)
岩手大学 国立 岩手大学 2013年 第5問
$y=-x(x-a)$で与えられる放物線$C_1$と関数$y=a-|ax+b|$のグラフ$C_2$が原点で接している.ただし,実数$a$は正とする.このとき,次の問いに答えよ.

(1)$b$を$a$を用いて表せ.
(2)$a=2$のとき,$C_1$と$C_2$を図示せよ.
(3)(2)において$C_1$と$x$軸で囲まれた図形の面積と,$C_1$と$C_2$によって囲まれた図形の面積の比を求めよ.
岩手大学 国立 岩手大学 2013年 第5問
$y=-x(x-a)$で与えられる放物線$C_1$と関数$y=a-|ax+b|$のグラフ$C_2$が原点で接している.ただし,実数$a$は正とする.このとき,次の問いに答えよ.

(1)$b$を$a$を用いて表せ.
(2)$a=2$のとき,$C_1$と$C_2$を図示せよ.
(3)(2)において$C_1$と$x$軸で囲まれた図形の面積と,$C_1$と$C_2$によって囲まれた図形の面積の比を求めよ.
岩手大学 国立 岩手大学 2013年 第6問
実数$a>0$と$k>0$に対して$2$つの曲線
\[ C_1:y=ax^3,\quad C_2:y=k \log x \quad (x>0) \]
を考える.ここで,$\log x$は$x$の自然対数とする.$C_1$と$C_2$がただ$1$点を共有し,その点における接線が一致するとき,次の問いに答えよ.

(1)共有点の$x$座標を求めよ.
(2)$k$を$a$を用いて表せ.
(3)$k=4$のとき,$C_1$,$C_2$および$x$軸で囲まれた図形の面積を求めよ.
浜松医科大学 国立 浜松医科大学 2013年 第1問
関数$\displaystyle f(x)=\log x+\frac{1}{x}$と曲線$C:y=f(x) \ (x>0)$について,以下の問いに答えよ.なお,必要ならば$\displaystyle \lim_{x \to \infty}\frac{\log x}{x}=0$を用いてもよい.

(1)$f(x)$の導関数$f^\prime(x)$と不定積分$\displaystyle \int f(x) \, dx$をそれぞれ求めよ.
(2)曲線$C$の変曲点を求めよ.
以下$a$は$1$より大きい実数とし,点$(a,\ f(a))$における$C$の接線を$\ell(a)$とする.
(3)接線$\ell(a)$の方程式を求めよ.また,$a \neq 2$のとき,曲線$C$と接線$\ell(a)$は$2$個の共有点(接点と交点)をもつことを示せ.
(4)$a=2$とする.曲線$C$,接線$\ell(2)$と$2$直線$x=1,\ x=4$で囲まれた図形の面積を求めよ.
宮城教育大学 国立 宮城教育大学 2013年 第5問
以下の問いに答えよ.

(1)$a>0$のとき,
\[ S(a)=\int_0^{\frac{\pi}{2}} |\sin 2x-a \cos x| \, dx \]
とする.$S(a)$の最小値を求めよ.
(2)$a>2$のとき,$2$曲線$\displaystyle y=\sin 2x,\ y=a \cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と$y$軸で囲まれる図形を考える.この図形を$x$軸のまわりに$1$回転してできる立体の体積を$a$を用いて表せ.
宮城教育大学 国立 宮城教育大学 2013年 第4問
$2$曲線$\displaystyle C_1:y=\left( x-\frac{1}{2} \right)^2-\frac{1}{2}$,$\displaystyle C_2:y=\left( x-\frac{5}{2} \right)^2-\frac{5}{2}$の両方に接する直線を$\ell$とするとき,次の問いに答えよ.

(1)直線$\ell$の方程式を求めよ.
(2)$2$曲線$C_1,\ C_2$と直線$\ell$で囲まれた図形の面積$S$を求めよ.
秋田大学 国立 秋田大学 2013年 第3問
関数$\displaystyle f(x)=\sin x+\frac{1}{2}\sin 2x \ (0 \leqq x \leqq 2\pi)$について,次の問いに答えよ.

(1)$f(x)$の増減を調べ,最大値と最小値を求めよ.
(2)曲線$y=f(x)$と$x$軸で囲まれた図形を,$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
秋田大学 国立 秋田大学 2013年 第2問
$k$を整数とし,$0 \leqq x \leqq \pi$において,
\[ f(x)=e^x \sin \left\{ (4k+1)x \right\},\quad g(x)=e^x \sin x \]
とする.このとき,次の問いに答えよ.

(1)$k=2$のとき,$2$つの曲線$y=f(x)$,$y=g(x)$の共有点の$x$座標を求めよ.
(2)$k=-1$のとき,$2$つの曲線$y=f(x)$,$y=g(x)$で囲まれた図形の面積を求めよ.
(3)任意の整数$k$に対して,$2$つの曲線$y=f(x),\ y=g(x)$の共有点のうちに,その点におけるそれぞれの曲線の接線が一致するものがあることを示せ.
香川大学 国立 香川大学 2013年 第4問
$a>0$のとき,$2$つの放物線$y=x^2-2,\ y=-ax^2+ax-1$について,次の問に答えよ.

(1)$2$つの放物線の交点の座標を求めよ.
(2)$2$つの放物線で囲まれた図形の面積を求めよ.
香川大学 国立 香川大学 2013年 第4問
$0<p_1<p_2,\ 1<r_2$とする.中心$\mathrm{O}_1(p_1,\ 0)$,半径$1$の円$C_1$と,中心$\mathrm{O}_2(p_2,\ 0)$,半径$r_2$の円$C_2$は点$\mathrm{T}$で外接している.また円$C_1,\ C_2$はともに放物線$C:x=y^2$に接している.円$C_1$と放物線$C$との接点で第$1$象限にあるものを$\mathrm{Q}_1({q_1}^2,\ q_1)$,円$C_2$と放物線$C$との接点で第$1$象限にあるものを$\mathrm{Q}_2({q_2}^2,\ q_2)$とおくとき,次の問に答えよ.

(1)$p_1,\ p_2,\ q_1,\ q_2,\ r_2$を求めよ.
(2)放物線$C$と弧$\widehat{\mathrm{Q}_1 \mathrm{T}}$および弧$\widehat{\mathrm{Q}_2 \mathrm{T}}$で囲まれた図形を$D$とするとき,$C$,$C_1$,$C_2$の概形をかき,$D$を図示せよ.ただし,ここでいう弧とは,その中心角が$180^\circ$以下のものをいう.
(3)$D$を$x$軸のまわりに$1$回転させてできる立体の体積$V$を求めよ.
スポンサーリンク

「図形」とは・・・

 まだこのタグの説明は執筆されていません。