タグ「図形」の検索結果

36ページ目:全857問中351問~360問を表示)
東北医科薬科大学 私立 東北医科薬科大学 2014年 第1問
放物線$y=-x^2+8x$と直線$y=2x+t (t \geqq 0)$と直線$x=0$,$x=6$とで囲まれた図形の面積を$S(t)$とする.このとき,次の問に答えなさい.

(1)$S(12)=[アイ]$である.
(2)$S(t)$が$3$つの部分の面積の和になるのは$[ウ]<t<[エ]$のときである.このとき$S(t)$は
\[ [オ](t-[カ])+\frac{[キ]}{[ク]}([ケ]-t) \sqrt{[ケ]-t} \]
である.
(3)以下$[ウ]<t<[エ]$で考える.$A=\sqrt{[ケ]-t}$とおく.$S(t)$を$A$で表すと
\[ S(t)=\frac{[コ]}{[サ]}A^3-[シ]A^2+[スセ] \]
となる.また$\displaystyle A=\frac{[ソ]}{[タ]}$のとき$S(t)$は最小値$\displaystyle \frac{[チツ]}{[テ]}$をとる.
東北医科薬科大学 私立 東北医科薬科大学 2014年 第2問
一辺の長さが$1$である正三角形を右図のように一段ずつ積み重ねていき,$k$段積み重ねた図形を$F_k$とおく.図形$F_k$に表れる一辺の長さが$n$である上向きの正三角形$\triangle$の個数を$F_k(n)$とおく(下向きの正三角形$\bigtriangledown$は考えない).例えば$F_2(1)=3$,$F_2(2)=1$である.このとき,次の問に答えなさい.
(図は省略)

(1)$F_3(1)=[ア]$,$F_3(2)=[イ]$,$F_3(3)=[ウ]$である.
(2)図形$F_k$に表れる一辺の長さが$1$である上向きの正三角形の個数は
\[ F_k(1)=\frac{[エ]([エ]+[オ])}{[カ]} \]
である.
(3)図形$F_k$に表れる一辺の長さが$n$である上向きの正三角形の個数は
\[ F_k(n)=\frac{([キ]-n+[ク])([ケ]-n+[コ])}{[サ]} \]
である.ただし,$[ク]<[コ]$となるように表しなさい.
(4)図形$F_k$に表れる上向きの正三角形の個数は全部で
\[ \frac{[シ] ([ス]+[セ])([ソ]+[タ])}{[チ]} \]
である.ただし$[セ]<[タ]$となるように表しなさい.
甲南大学 私立 甲南大学 2014年 第3問
関数$f(x)=\sin x$,$g(x)=\cos x+1$について,以下の問いに答えよ.ただし,$0 \leqq x \leqq 2\pi$とする.

(1)曲線$y=f(x)$と$y=g(x)$の共有点の座標を求めよ.
(2)曲線$y=f(x)$と$y=g(x)$によって囲まれる図形$D$の面積を求めよ.
(3)$(2)$で求めた図形$D$を$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
産業医科大学 私立 産業医科大学 2014年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.

(1)実数$x$の関数$f(x)=|\sin 2x+2 \sin x+2 \cos x|$の最大値は$[ア]$である.
(2)行列$A=\left( \begin{array}{cc}
\cos \theta & -2 \sin \theta \\
\displaystyle\frac{1}{2} \sin \theta & \cos \theta
\end{array} \right)$が$0<\theta<\pi$の範囲で$A^5=A^2$を満たすとき,実数$\theta$の値は$[イ]$である.
(3)定積分$\displaystyle \int_0^{-1} \frac{x^2-1}{x^2+1} \, dx$の値は$[ウ]$である.
(4)$n$をある自然数とする.実数$x$に対して,方程式$7 \sin^{8n} x+x=0$の解の個数は$[エ]$である.
(5)$\displaystyle 0<a<\frac{1}{4}$とする.座標平面において,方程式$\displaystyle -4ax+\sqrt{(x+a)^2+y^2}=\frac{1}{4}$で表される曲線が囲む図形の面積は$[オ]$である.
(6)$x+y+z+w=20$を満たす正の整数$x,\ y,\ z,\ w$の組は全部で$[カ]$個である.
(7)$7$つの実数$\displaystyle \frac{1}{2}$,$\sqrt{\pi}$,$\sqrt{3}$,$\displaystyle \frac{\pi^2}{8}$,$\displaystyle \sin \frac{\pi}{8}$,$\displaystyle \cos \frac{\pi}{8}$,$\displaystyle \tan \frac{\pi}{8}$を小さい方から順に並べたものを$A<B<C<D<E<F<G$とする.このとき実数$A^2$の値は$[キ]$であり,$E^2-F^2+G^2$の値は$[ク]$である.
大阪工業大学 私立 大阪工業大学 2014年 第4問
放物線$C_1:y=x^2+3x+6$について,次の問いに答えよ.

(1)$C_1$上の点$(-1,\ 4)$における接線$\ell$の方程式を求めよ.
(2)$C_1$を$x$軸方向に$3$,$y$軸方向に$2$だけ平行移動した放物線$C_2$の方程式を求めよ.
(3)$C_2$と$\ell$の交点の座標をすべて求めよ.
(4)$C_2$と$\ell$で囲まれた図形の面積を求めよ.
大阪工業大学 私立 大阪工業大学 2014年 第4問
$2$つの関数$f(x)=\log (a-4x)$,$g(x)=\log x$について,次の問いに答えよ.ただし,$a$は定数であり,$a>4$とする.

(1)曲線$y=f(x)$と$x$軸の共有点$\mathrm{A}$の座標を求めよ.
(2)$2$曲線$y=f(x)$と$y=g(x)$の共有点$\mathrm{B}$の座標を求めよ.
(3)曲線$y=f(x)$の点$\mathrm{B}$における接線と,曲線$y=g(x)$の点$\mathrm{B}$における接線が直交するとき,$a$の値を求めよ.
(4)$a$を$(3)$で求めた値とするとき,$2$曲線$y=f(x)$,$y=g(x)$と$x$軸で囲まれた図形の面積を求めよ.
金沢工業大学 私立 金沢工業大学 2014年 第6問
原点$\mathrm{O}$を通り,曲線$y=2+2 \log x$に接する直線を$\ell$とし,その接点を$\mathrm{A}$とする.また,この曲線と直線$\ell$,および$x$軸で囲まれた図形を$D$とする.

(1)この曲線と$x$軸との交点の$x$座標は$\displaystyle \frac{[ア]}{e}$である.
(2)接点$\mathrm{A}$の座標は$([イ],\ [ウ])$である.
(3)図形$D$の面積は$\displaystyle [エ]-\frac{[オ]}{e}$である.
(4)図形$D$を$x$軸のまわりに$1$回転してできる立体の体積は$\displaystyle \frac{[カ]([キ]-e)}{[ク]e} \pi$である.
青山学院大学 私立 青山学院大学 2014年 第4問
次の問に答えよ.

(1)$y=\log x$のグラフをもとにして,$y=\log (3-x)$と$\displaystyle y=\log \frac{4}{x+2}$のグラフをかけ.
(2)曲線$y=\log (3-x)$と曲線$\displaystyle y=\log \frac{4}{x+2}$で囲まれた図形の面積を求めよ.
早稲田大学 私立 早稲田大学 2014年 第2問
$x$-$y$平面の双曲線$\displaystyle y=\frac{1}{x}$上の相異なる$3$点を,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とし,その$x$座標を,それぞれ,$a,\ b,\ c$とする.このとき,次の各問に答えよ.

(1)空欄にあてはまる数式を求め,答のみ解答欄に記入せよ.

直線$\mathrm{AB}$に垂直な直線の傾きは$[ア]$である.$\triangle \mathrm{ABC}$の垂心を$\mathrm{H}$とするとき,$\mathrm{H}$の$x,\ y$座標を$a,\ b,\ c$を用いて表すと,$x=[イ]$,$y=[ウ]$である.よって,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が双曲線上を動くとき,$\mathrm{H}$の軌跡は$x,\ y$の関係式$[エ]$で表され,$\mathrm{H}$はこの関係式で表される図形上のすべての点を動く.

(2)$\triangle \mathrm{ABC}$の外心を$\mathrm{P}(x,\ y)$とする.

(i) $\mathrm{P}$の座標$x,\ y$を$a,\ b,\ c$を用いて表せ.
(ii) $a,\ b,\ c$が,$a+b=0$,$c=1$を満たすとき,$\mathrm{P}(x,\ y)$の軌跡を求め,その軌跡を解答欄の$x$-$y$平面に図示せよ.
早稲田大学 私立 早稲田大学 2014年 第3問
次の各問に答えよ.ただし,$(2)$は答のみ解答欄に記入せよ.

(1)放物線$y=ax^2+bx (a>0)$と直線$y=mx$が異なる$2$点で交わるとする.原点と異なる交点の$x$座標を$\alpha$とするとき,放物線と直線で囲まれた図形の面積は$\displaystyle S=\frac{1}{6}a |\alpha|^3$であることを示せ.
(2)$2$つの放物線$C_1:y=a_1x^2+b_1x$,$C_2:y=a_2x^2+b_2x$が異なる$2$点で交わるとする.ただし,$a_1a_2<0$とする.

(i) 放物線$C_1$,$C_2$の$2$つの交点を通る直線を$\ell:y=mx$とするとき,$m$を求めよ.
(ii) 放物線$C_i$と直線$\ell$で囲まれた図形の面積を$S_i (i=1,\ 2)$とするとき,$\displaystyle \frac{S_2}{S_1}$を求めよ.
(iii) $m=1$かつ$S_1=S_2$のとき,$a_i,\ b_i (i=1,\ 2)$が満たす条件を求めよ.
スポンサーリンク

「図形」とは・・・

 まだこのタグの説明は執筆されていません。