タグ「図形」の検索結果

31ページ目:全857問中301問~310問を表示)
山梨大学 国立 山梨大学 2014年 第5問
曲線$C$は媒介変数$t (0 \leqq t \leqq 2\pi)$によって,$x=t-\sin t$,$y=1-\cos t$と表される.

(1)$x$は$t$の関数として増加関数であることを示せ.
(2)$0<t<2\pi$のとき,$\displaystyle \frac{dy}{dx}$を$t$を用いた式で表せ.また,$y$の$x$に関する増減を調べよ.
(3)不定積分$\displaystyle \int \cos^2 t \, dt$および$\displaystyle \int \cos^3 t \, dt$を求めよ.
(4)曲線$C$と$x$軸で囲まれた図形を$x$軸の周りに$1$回転させてできる回転体の体積を求めよ.
東京海洋大学 国立 東京海洋大学 2014年 第3問
座標平面上の曲線$C:y=x^3-x$を考える.$C$上の点$(-a,\ -a^3+a)$と$(a,\ a^3-a)$ $(a>0)$における$C$の接線をそれぞれ$\ell_1$,$\ell_2$とする.また,$\ell_1$と$C$との$(-a,\ -a^3+a)$以外の共有点を$\mathrm{P}_1$,$\ell_2$と$C$との$(a,\ a^3-a)$以外の共有点を$\mathrm{P}_2$とする.さらに,$\mathrm{P}_2$を通り$y$軸に平行な直線と$\ell_1$の交点を$\mathrm{Q}_1$,$\mathrm{P}_1$を通り$y$軸に平行な直線と$\ell_2$の交点を$\mathrm{Q}_2$とする.

(1)$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{Q}_1$,$\mathrm{Q}_2$の座標を求めよ.
(2)$2$点$\mathrm{P}_1$,$\mathrm{P}_2$を通る直線と$C$で囲まれる$2$つの図形の面積の和を$S_1$,四角形$\mathrm{P}_1 \mathrm{Q}_1 \mathrm{P}_2 \mathrm{Q}_2$の面積を$S_2$とする.$\displaystyle \frac{S_1}{S_2}$を求めよ.ただし,$\displaystyle \int x^3 \, dx=\frac{x^4}{4}+D$($D$は積分定数)を用いてよい.
山形大学 国立 山形大学 2014年 第2問
$xy$平面上の曲線$C:y=\sqrt{x}$がある.曲線$C$上の点$\mathrm{P}(t,\ \sqrt{t}) (t>0)$における接線を$\ell$とする.さらに,直線$\ell$と$x$軸の交点を$\mathrm{Q}$とする.次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)点$\mathrm{Q}$の座標を$t$を用いて表せ.
(3)点$\mathrm{P}$から$x$軸に下ろした垂線を$\mathrm{PR}$とするとき,$\triangle \mathrm{PQR}$を$x$軸のまわりに$1$回転してできる立体の体積を$t$を用いて表せ.
(4)曲線$C$,直線$\ell$および$x$軸で囲まれた図形を,$x$軸のまわりに$1$回転してできる立体の体積を$t$を用いて表せ.
群馬大学 国立 群馬大学 2014年 第2問
$p$を正の実数とする.放物線$y=3x^2-px+1$と$x$軸で囲まれた図形の面積が$\displaystyle \frac{4}{27}$であるとき,$p$の値を求めよ.
香川大学 国立 香川大学 2014年 第2問
座標平面の原点を$\mathrm{O}$とし,点$\mathrm{A}$を第$1$象限に,点$\mathrm{B}$を$x$軸の正の部分に,$\mathrm{AO}=\mathrm{AB}=1$となるようにとる.このとき,次の問に答えよ.

(1)二等辺三角形$\mathrm{AOB}$の底角を$\theta$とするとき,頂点$\mathrm{A}$,$\mathrm{B}$の座標を$\theta$を用いて表せ.
(2)$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る放物線を$C:y=f(x)$とする.このとき,$f(x)$を求めよ.
(3)放物線$C$と$x$軸で囲まれた図形の面積$S$を求めよ.
(4)面積$S$の最大値と,そのときの$\theta$の値を求めよ.
香川大学 国立 香川大学 2014年 第4問
曲線$C_1:y=x^3-2x^2$,$C_2:y=x^2+ax+1$について,次の問に答えよ.

(1)曲線$C_1$の概形をかけ.
(2)曲線$C_1$と$x$軸の共有点で原点と異なるものを$\mathrm{P}$とする.点$\mathrm{P}$における$C_1$の接線$\ell$の方程式を求めよ.
(3)$(2)$で求めた直線$\ell$が曲線$C_2$の接線となるような$a$の値をすべて求めよ.
(4)$a$が$(3)$で求めた値のうち最小の値をとるとき,曲線$C_2$と直線$\ell$および$y$軸で囲まれた図形の面積を求めよ.
香川大学 国立 香川大学 2014年 第5問
曲線$\displaystyle C_1:y=\tan x \left( 0 \leqq x<\frac{\pi}{2} \right)$,$\displaystyle C_2:y=\cos x \left( 0 \leqq x<\frac{\pi}{2} \right)$について,次の問に答えよ.

(1)$2$曲線$C_1$,$C_2$の共有点の$x$座標を$a$とするとき,$\sin a$の値を求めよ.
(2)曲線$C_1,\ C_2$と$y$軸で囲まれた図形の面積を求めよ.
香川大学 国立 香川大学 2014年 第2問
座標平面の原点を$\mathrm{O}$とし,点$\mathrm{A}$を第$1$象限に,点$\mathrm{B}$を$x$軸の正の部分に,$\mathrm{AO}=\mathrm{AB}=1$となるようにとる.このとき,次の問に答えよ.

(1)二等辺三角形$\mathrm{AOB}$の底角を$\theta$とするとき,頂点$\mathrm{A}$,$\mathrm{B}$の座標を$\theta$を用いて表せ.
(2)$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る放物線を$C:y=f(x)$とする.このとき,$f(x)$を求めよ.
(3)放物線$C$と$x$軸で囲まれた図形の面積$S$を求めよ.
(4)面積$S$の最大値と,そのときの$\theta$の値を求めよ.
香川大学 国立 香川大学 2014年 第4問
曲線$C_1:y=x^3-2x^2$,$C_2:y=x^2+ax+1$について,次の問に答えよ.

(1)曲線$C_1$の概形をかけ.
(2)曲線$C_1$と$x$軸の共有点で原点と異なるものを$\mathrm{P}$とする.点$\mathrm{P}$における$C_1$の接線$\ell$の方程式を求めよ.
(3)$(2)$で求めた直線$\ell$が曲線$C_2$の接線となるような$a$の値をすべて求めよ.
(4)$a$が$(3)$で求めた値のうち最小の値をとるとき,曲線$C_2$と直線$\ell$および$y$軸で囲まれた図形の面積を求めよ.
香川大学 国立 香川大学 2014年 第2問
座標平面の原点を$\mathrm{O}$とし,点$\mathrm{A}$を第$1$象限に,点$\mathrm{B}$を$x$軸の正の部分に,$\mathrm{AO}=\mathrm{AB}=1$となるようにとる.このとき,次の問に答えよ.

(1)二等辺三角形$\mathrm{AOB}$の底角を$\theta$とするとき,頂点$\mathrm{A}$,$\mathrm{B}$の座標を$\theta$を用いて表せ.
(2)$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る放物線を$C:y=f(x)$とする.このとき,$f(x)$を求めよ.
(3)放物線$C$と$x$軸で囲まれた図形の面積$S$を求めよ.
(4)面積$S$の最大値と,そのときの$\theta$の値を求めよ.
スポンサーリンク

「図形」とは・・・

 まだこのタグの説明は執筆されていません。