タグ「図形」の検索結果

19ページ目:全857問中181問~190問を表示)
愛知教育大学 国立 愛知教育大学 2015年 第9問
$a,\ b$を実数とし,$b<a$とする.焦点が$(0,\ a)$,準線が$y=b$である放物線を$P$で表すことにする.すなわち,$P$は点$(0,\ a)$からの距離と直線$y=b$からの距離が等しい点の軌跡である.

(1)放物線$P$の方程式を求めよ.
(2)焦点$(0,\ a)$を中心とする半径$a-b$の円を$C$とする.このとき,円$C$と放物線$P$の交点を求めよ.
(3)円$C$と放物線$P$で囲まれた図形のうち,放物線$P$の上側にある部分の面積を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2015年 第2問
$e$を自然対数の底とする.$xy$平面上で,曲線$y=e^{2x}$の,点$(t,\ e^{2t})$における接線を$\ell_t$とし,点$(s,\ e^{2s})$における接線を$\ell_s$とする.$\ell_s$の傾きが$\ell_t$の傾きの$e$倍に等しいとする.

(1)$\ell_t$と$\ell_s$の交点の座標を$t$を用いて表せ.
(2)$\ell_s$を,$y$軸に関して対称移動して得られる直線を$L$とする.$L$と直線$x=t$との交点を$\mathrm{P}_t$とする.$\mathrm{P}_t$の$y$座標を$t$を用いて表せ.
(3)$a$を正の実数とする.$t$が$0 \leqq t \leqq a$の範囲を動くとき,$(2)$で定めた点$\mathrm{P}_t$が描く曲線を$C$とする.$C$と$x$軸および直線$x=a$とで囲まれた図形の面積を求めよ.
茨城大学 国立 茨城大学 2015年 第3問
曲線$C_1:y=\log x (x>0)$と曲線$C_2:y=-x^2+a$を考える.ただし,$\log$は自然対数を表す.以下の各問に答えよ.

(1)曲線$C_1$上の点$\mathrm{P}(t,\ \log t)$における法線$\ell$の方程式を求めよ.ただし,曲線上の点$\mathrm{P}$における法線とは,点$\mathrm{P}$を通り,点$\mathrm{P}$における接線に垂直に交わる直線のことである.
(2)$(1)$で求めた法線$\ell$と曲線$C_2$が接するとき,$a$の値を$t$を用いて表せ.また,$C_2$と$\ell$が接する点$\mathrm{Q}$の座標を$t$を用いて表せ.
(3)$(2)$で求めた点$\mathrm{Q}$を通り$y$軸に平行な直線,点$\mathrm{P}$を通り$y$軸に平行な直線,$x$軸,および曲線$C_1$で囲まれた図形の面積$S(t)$を求めよ.
(4)$(3)$で求めた$S(t)$の極値を求めよ.
山形大学 国立 山形大学 2015年 第2問
$\displaystyle y=\cos \frac{\pi x}{2} (0 \leqq x \leqq 1)$で与えられる曲線を$C$とする.曲線$C$と$x$軸,$y$軸で囲まれた図形$S$について,以下の問いに答えよ.

(1)図形$S$の面積を求めよ.
(2)図形$S$を$x$軸のまわりに$1$回転させて得られる立体の体積を求めよ.
(3)部分積分法を用いて次の不定積分を求めよ.
\[ \int x^2 \sin x \, dx \]
(4)図形$S$を$y$軸のまわりに$1$回転させて得られる立体の体積を求めよ.その際,曲線$C$は変数$t$を媒介変数として
\[ x=\frac{2}{\pi}t,\quad y=\cos t \quad \left( 0 \leqq t \leqq \frac{\pi}{2} \right) \]
と表せることを利用せよ.
山形大学 国立 山形大学 2015年 第3問
座標平面上の放物線$\displaystyle y=x^2-\frac{1}{2}ax+2$を$C$とする.放物線$C$上に点$\mathrm{P}$があり,点$\mathrm{P}$の$x$座標が$a$であるとき,次の問に答えよ.ただし,$a>0$とする.

(1)点$\mathrm{P}$における放物線$C$の接線$\ell_1$の方程式を求めよ.
(2)点$\mathrm{P}$を通り,直線$\ell_1$に垂直な直線$\ell_2$の方程式を求めよ.
(3)放物線$C$と直線$\ell_2$の交点で,点$\mathrm{P}$と異なる点を$\mathrm{Q}$とするとき,点$\mathrm{Q}$の座標を求めよ.
(4)放物線$C$と直線$\ell_2$で囲まれた図形の面積$S(a)$を求めよ.
(5)面積$S(a)$の最小値と,そのときの$a$の値を求めよ.
山形大学 国立 山形大学 2015年 第4問
曲線$y=e^x$上の点$\mathrm{A}(1,\ e)$における接線$\ell$と$x$軸との交点を$\mathrm{B}(b,\ 0)$とする.この曲線と直線$\ell$および直線$x=b$で囲まれた図形を$D$とする.このとき,次の問に答えよ.

(1)$b$を求めよ.
(2)図形$D$の面積$S$を求めよ.
(3)定積分$\displaystyle \int_1^e (\log y)^2 \, dy$を求めよ.
(4)図形$D$を$y$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
山形大学 国立 山形大学 2015年 第4問
曲線$y=e^x$上の点$\mathrm{A}(a,\ e^a)$における接線$\ell$と$x$軸との交点を$\mathrm{B}(b,\ 0)$とする.ただし,$a>1$とする.この曲線と直線$\ell$および直線$x=b$で囲まれた図形を$D$とする.このとき,次の問に答えよ.

(1)$b$を$a$を用いて表せ.
(2)図形$D$の面積$S$を$a$を用いて表せ.
(3)定積分$\displaystyle \int_{e^b}^{e^a} (\log y)^2 \, dy$を$a$を用いて表せ.
(4)図形$D$を$y$軸のまわりに$1$回転してできる立体の体積$V$を$a$を用いて表せ.
(5)$\displaystyle \lim_{a \to \infty} \frac{V}{ae^a}$と$\displaystyle \lim_{a \to \infty} \frac{V}{aS}$を求めよ.
山形大学 国立 山形大学 2015年 第3問
座標平面上の放物線$\displaystyle y=x^2-\frac{1}{2}ax+2$を$C$とする.放物線$C$上に点$\mathrm{P}$があり,点$\mathrm{P}$の$x$座標が$a$であるとき,次の問に答えよ.ただし,$a>0$とする.

(1)点$\mathrm{P}$における放物線$C$の接線$\ell_1$の方程式を求めよ.
(2)点$\mathrm{P}$を通り,直線$\ell_1$に垂直な直線$\ell_2$の方程式を求めよ.
(3)放物線$C$と直線$\ell_2$の交点で,点$\mathrm{P}$と異なる点を$\mathrm{Q}$とするとき,点$\mathrm{Q}$の座標を求めよ.
(4)放物線$C$と直線$\ell_2$で囲まれた図形の面積$S(a)$を求めよ.
(5)面積$S(a)$の最小値と,そのときの$a$の値を求めよ.
島根大学 国立 島根大学 2015年 第4問
$xy$平面において,点$\mathrm{P}(x,\ y)$と点$(2,\ 0)$の距離が,点$\mathrm{P}$と直線$x=1$の距離の$\sqrt{2}$倍と等しくなるような点$\mathrm{P}$の描く曲線を$C$とする.このとき,次の問いに答えよ.

(1)曲線$C$の方程式を求めよ.
(2)$t$を$0$でない実数とし,曲線$C$と直線$x+y=t$との交点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を$t$を用いて表せ.
(3)$(2)$で求めた点$\mathrm{Q}$から$x$軸に下ろした垂線を$\mathrm{QH}$とする.$t$が$2 \leqq t \leqq 4$の範囲を動くとき,線分$\mathrm{QH}$が通過してできる図形の面積を求めよ.
島根大学 国立 島根大学 2015年 第4問
$xy$平面において,点$\mathrm{P}(x,\ y)$と点$(2,\ 0)$の距離が,点$\mathrm{P}$と直線$x=1$の距離の$\sqrt{2}$倍と等しくなるような点$\mathrm{P}$の描く曲線を$C$とする.このとき,次の問いに答えよ.

(1)曲線$C$の方程式を求めよ.
(2)$t$を$0$でない実数とし,曲線$C$と直線$x+y=t$との交点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を$t$を用いて表せ.
(3)$(2)$で求めた点$\mathrm{Q}$から$x$軸に下ろした垂線を$\mathrm{QH}$とする.$t$が$2 \leqq t \leqq 4$の範囲を動くとき,線分$\mathrm{QH}$が通過してできる図形の面積を求めよ.
スポンサーリンク

「図形」とは・・・

 まだこのタグの説明は執筆されていません。