タグ「図形」の検索結果

15ページ目:全857問中141問~150問を表示)
東京工業大学 国立 東京工業大学 2015年 第3問
$a>0$とする.曲線$y=e^{-x^2}$と$x$軸,$y$軸,および直線$x=a$で囲まれた図形を,$y$軸のまわりに$1$回転してできる回転体を$A$とする.

(1)$A$の体積$V$を求めよ.
(2)点$(t,\ 0) (-a \leqq t \leqq a)$を通り$x$軸と垂直な平面による$A$の切り口の面積を$S(t)$とするとき,不等式
\[ S(t) \leqq \int_{-a}^a e^{-(s^2+t^2)} \, ds \]
を示せ.
(3)不等式
\[ \sqrt{\pi (1-e^{-a^2})} \leqq \int_{-a}^a e^{-x^2} \, dx \]
を示せ.
静岡大学 国立 静岡大学 2015年 第1問
関数$f(x)=x^3-9x^2+24x$について,次の問いに答えよ.

(1)$f(x)$の増減,極値を調べて,グラフの概形をかけ.
(2)$k$を定数とするとき,曲線$y=f(x)$と直線$y=kx$の共有点の個数を調べよ.
(3)曲線$y=f(x)$と直線$y=6x$で囲まれた図形の面積$S$を求めよ.
岡山大学 国立 岡山大学 2015年 第4問
$2$次関数$y=f(x)$のグラフは,上に凸であり,原点および点$\mathrm{Q}(a,\ 0)$を通るものとする.ただし,$0<a<1$である.関数$y=x^2$のグラフを$C$,関数$y=f(x)$のグラフを$D$とし,$C$と$D$の共有点のうち,原点と異なるものを$\mathrm{P}$とする.点$\mathrm{P}$における$C$の接線の傾きを$m$,$D$の接線の傾きを$n$とするとき
\[ (2a-1)m=2an \]
が成り立つとする.このとき,次の問いに答えよ.

(1)$f(x)$を$x$と$a$の式で表せ.
(2)$0 \leqq x \leqq a$の範囲で,曲線$D$と$x$軸で囲まれた図形の面積を$S(a)$とする.$S(a)$を$a$の式で表せ.
(3)$(2)$で求めた$S(a)$の$0<a<1$における最大値を求めよ.
岡山大学 国立 岡山大学 2015年 第3問
自然数$n=1,\ 2,\ 3,\ \cdots$に対して,関数$f_n(x)=x^{n+1}(1-x)$を考える.

(1)曲線$y=f_n(x)$上の点$(a_n,\ f_n(a_n))$における接線が原点を通るとき,$a_n$を$n$の式で表せ.ただし,$a_n>0$とする.
(2)$0 \leqq x \leqq 1$の範囲で,曲線$y=f_n(x)$と$x$軸とで囲まれた図形の面積を$B_n$とする.また,$(1)$で求めた$a_n$に対して,$0 \leqq x \leqq a_n$の範囲で,曲線$y=f_n(x)$,$x$軸,および直線$x=a_n$で囲まれた図形の面積を$C_n$とする.$B_n$および$C_n$を$n$の式で表せ.
(3)$(2)$で求めた$B_n$および$C_n$に対して,極限値$\displaystyle \lim_{n \to \infty} \frac{C_n}{B_n}$を求めよ.ただし,$\displaystyle \lim_{n \to \infty} \left( 1+\frac{1}{n} \right)^n$が自然対数の底$e$であることを用いてよい.
佐賀大学 国立 佐賀大学 2015年 第1問
$\phantom{A}$
\[ f(x)=\left\{ \begin{array}{ll}
x(5-x) & (x \geqq 0) \\
x(x^2-1) & (x<0)
\end{array} \right. \]
とおき,関数$y=f(x)$のグラフを$C$とおく.直線$y=ax$と$C$は,原点$\mathrm{O}$およびそれ以外の$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているものとする.ただし,点$\mathrm{P}$の$x$座標は正,点$\mathrm{Q}$の$x$座標は負であるとする.線分$\mathrm{OP}$と$C$によって囲まれる図形の面積を$S_1(a)$,線分$\mathrm{OQ}$と$C$によって囲まれる図形の面積を$S_2(a)$とし,$S(a)=S_1(a)+S_2(a)$とおく.このとき,次の問に答えよ.

(1)$a$の値の範囲を求めよ.
(2)$S_1(a)$を$a$を用いて表せ.
(3)$S_2(a)$を$a$を用いて表せ.
(4)$(1)$で求めた範囲を$a$が変化するとき,$S(a)$の最小値を求めよ.
佐賀大学 国立 佐賀大学 2015年 第2問
直線$\ell:y=ax+b$と曲線$C:y=\log x (x>0)$は接するものとする.ただし,$a,\ b$は定数であり,$a>0$とする.このとき,次の問に答えよ.

(1)$b$を$a$を用いて表せ.
(2)$\ell$と$C$および$x$軸で囲まれた図形の面積を$S$とする.$0<a<1$のとき,$S$を$a$を用いて表せ.
鳥取大学 国立 鳥取大学 2015年 第4問
$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$において,$2$曲線$y=\cos x$,$y=\sin 2x$で囲まれた図形を$x$軸の周りに$1$回転してできる立体の体積$V$を求めたい.次の問いに答えよ.

(1)$2$曲線$y=\cos x$,$y=\sin 2x$の交点の$x$座標をすべて求めよ.ただし,$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$とする.
(2)体積$V$を求めよ.
長崎大学 国立 長崎大学 2015年 第1問
$2$つの放物線
\[ C_1:y=x^2,\quad C_2:y=x^2-2ax+2a^2 \]
を考える.ただし,$a>0$とする.以下の問いに答えよ.

(1)放物線$C_2$の頂点の座標を$a$を用いて表せ.
(2)$2$つの放物線$C_1$,$C_2$の共通接線を$\ell$とし,$C_1$と$\ell$との接点の$x$座標を$p$,$C_2$と$\ell$との接点の$x$座標を$q$とする.$p$と$q$の値および$\ell$の方程式を,それぞれ$a$を用いて表せ.
(3)放物線$C_1$,$C_2$および接線$\ell$によって囲まれた図形の面積を$S_1$とする.$S_1$を$a$を用いて表せ.
(4)点$\displaystyle \left( -\frac{a}{2},\ \frac{a^2}{4} \right)$における$C_1$の接線を$m$とする.このとき,$m$の方程式を$a$を用いて表せ.また,$m$と接線$\ell$との交点の$x$座標を求めよ.
(5)放物線$C_1$および接線$\ell$,$m$によって囲まれた図形の面積を$S_2$とする.$S_2$を$a$を用いて表せ.さらに,$\displaystyle \frac{S_2}{S_1}$の値を求めよ.
大分大学 国立 大分大学 2015年 第1問
方程式$y^2=x^6(1-x^2)$が表す図形で囲まれた面積を求めなさい.
九州工業大学 国立 九州工業大学 2015年 第4問
関数$\displaystyle f(x)=\frac{\sqrt{x^2-1}}{x} (x \geqq 1)$と曲線$C:y=f(x)$について,次に答えよ.

(1)区間$x>1$で,$f(x)$は増加し,曲線$C$は上に凸であることを示せ.
(2)曲線$C$の点$(\sqrt{2},\ f(\sqrt{2}))$における接線$\ell$の方程式を求めよ.
(3)$(2)$で求めた直線$\ell$と曲線$C$および$x$軸で囲まれた図形を$D$とする.$D$を$y$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
(4)$(3)$で定めた図形$D$の面積$S$を求めよ.
スポンサーリンク

「図形」とは・・・

 まだこのタグの説明は執筆されていません。