タグ「図形」の検索結果

1ページ目:全857問中1問~10問を表示)
東京海洋大学 国立 東京海洋大学 2016年 第3問
座標平面上に放物線$C:y=x^2$がある.点$\mathrm{P}(t,\ t^2)$(ただし,$t>0$)における$C$の接線を$\ell$とし,$\ell$が$x$軸,$y$軸と交わる点をそれぞれ$\mathrm{M}$,$\mathrm{N}$とする.$\mathrm{M}$を通り$\ell$と直交する直線が,$y$軸,直線$x=t$と交わる点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.

(1)$\angle \mathrm{QPR}$は$\ell$により二等分されることを示せ.
(2)$\triangle \mathrm{PQR}$が正三角形になるような$t$の値を求めよ.
(3)四角形$\mathrm{PQNR}$の面積を$S_1$とし,線分$\mathrm{PQ}$,$y$軸および$C$で囲まれる図形の面積を$S_2$とする.$(2)$のとき,$\displaystyle \frac{S_2}{S_1}$の値を求めよ.
京都大学 国立 京都大学 2016年 第4問
$xyz$空間において,平面$y=z$の中で
\[ |x| \leqq \frac{e^y+e^{-y}}{2}-1,\quad 0 \leqq y \leqq \log a \]
で与えられる図形$D$を考える.ただし$a$は$1$より大きい定数とする.

この図形$D$を$y$軸のまわりに$1$回転させてできる立体の体積を求めよ.
東京海洋大学 国立 東京海洋大学 2016年 第4問
座標平面上に曲線$C_1:y=x^3-x$と,$C_1$を$x$軸方向に$t$(ただし,$t>0$)だけ平行移動させた曲線$C_2$がある.$C_1$と$C_2$は$2$つの共有点を持つという.

(1)$t$の範囲を求めよ.
(2)$C_1$と$C_2$で囲まれる図形の面積$S$を$t$を用いて表せ.
(3)$S$の最大値とそのときの$t$の値を求めよ.
東京海洋大学 国立 東京海洋大学 2016年 第5問
$f(x)=\sqrt{x}e^{-\frac{x}{2}}$(ただし,$x>0$)に対し,座標平面上の曲線$C:y=f(x)$を考える.

(1)$f(x)$の極値を求めよ.
(2)曲線$C$,$2$直線$x=t$,$x=t+1$(ただし,$t>0$)および$x$軸で囲まれる図形を,$x$軸の周りに$1$回転して得られる立体の体積$V$を$t$を用いて表せ.
(3)$V$の最大値を求めよ.
大阪大学 国立 大阪大学 2016年 第2問
曲線$\displaystyle C:y=|\displaystyle\frac{1|{2}x^2-6}-2x$を考える.

(1)$C$と直線$L:y=-x+t$が異なる$4$点で交わるような$t$の値の範囲を求めよ.
(2)$C$と$L$が異なる$4$点で交わるとし,その交点を$x$座標が小さいものから順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$とするとき,
\[ \frac{|\overrightarrow{\mathrm{P|_1 \mathrm{P}_2}}+|\overrightarrow{\mathrm{P|_3 \mathrm{P}_4}}}{|\overrightarrow{\mathrm{P|_2 \mathrm{P}_3}}}=4 \]
となるような$t$の値を求めよ.
(3)$t$が$(2)$の値をとるとき,$C$と線分$\mathrm{P}_2 \mathrm{P}_3$で囲まれる図形の面積を求めよ.
神戸大学 国立 神戸大学 2016年 第2問
$a$を正の定数とし,$f(x)=|x^2+2ax+a|$とおく.以下の問に答えよ.

(1)$y=f(x)$のグラフの概形をかけ.
(2)$y=f(x)$のグラフが点$(-1,\ 2)$を通るときの$a$の値を求めよ.また,そのときの$y=f(x)$のグラフと$x$軸で囲まれる図形の面積を求めよ.
(3)$a=2$とする.すべての実数$x$に対して$f(x) \geqq 2x+b$が成り立つような実数$b$の取りうる値の範囲を求めよ.
名古屋工業大学 国立 名古屋工業大学 2016年 第1問
関数$\displaystyle f(x)=\frac{x-1}{x^2+1}$のグラフを曲線$C$とする.

(1)関数$f(x)$の極値を求めよ.
(2)曲線$C$の変曲点を求めよ.
(3)曲線$C$上の点$(0,\ f(0))$における接線を$\ell$とする.曲線$C$と接線$\ell$とで囲まれた図形の面積$S$を求めよ.
名古屋工業大学 国立 名古屋工業大学 2016年 第4問
実数$t$に対し,複素数
\[ \left( \frac{1}{2}+\cos t+i \sin t \right)^2 \]
の実部を$f(t)$,虚部を$g(t)$とする.座標平面上に
\[ \text{曲線}C:x=f(t),\quad y=g(t) \quad (0 \leqq t \leqq \pi) \]
がある.

(1)$0 \leqq t \leqq \pi$のとき$f(t)$のとる値の範囲を求めよ.

(2)曲線$C$上の点$\displaystyle \mathrm{P} \left( f \left( \frac{\pi}{3} \right),\ g \left( \frac{\pi}{3} \right) \right)$における接線の方程式を求めよ.

(3)曲線$C$の$y \leqq 0$の範囲にある部分と$x$軸とで囲まれた図形の面積$S$を求めよ.
金沢大学 国立 金沢大学 2016年 第2問
平面上の$2$つの曲線
\[ C_1:x^2+(y-5)^2=16,\quad C_2:y=\frac{1}{4}x^2 \]
を考える.次の問いに答えよ.

(1)$C_1$と$C_2$の共有点の座標を求めよ.
(2)$C_1$と$C_2$を同一平面上に図示せよ.
(3)$C_1$と$C_2$で囲まれた図形の面積を求めよ.
金沢大学 国立 金沢大学 2016年 第1問
数列$\{a_n\}$と$\{b_n\}$は
\[ \left\{ \begin{array}{l}
a_1=b_1=2, \phantom{\displaystyle\frac{[ ]}{[ ]}} \\
\displaystyle a_{n+1}=\frac{\sqrt{2}}{4}a_n-\frac{\sqrt{6}}{4}b_n,\quad b_{n+1}=\frac{\sqrt{6}}{4}a_n+\frac{\sqrt{2}}{4}b_n \quad (n=1,\ 2,\ 3,\ \cdots) \phantom{\displaystyle\frac{[ ]}{[ ]}}
\end{array} \right. \]
を満たすものとする.$a_n$を実部とし$b_n$を虚部とする複素数を$z_n$で表すとき,次の問いに答えよ.

(1)$z_{n+1}=wz_n$を満たす複素数$w$と,その絶対値$|w|$を求めよ.
(2)複素数平面上で,点$z_{n+1}$は点$z_n$をどのように移動した点であるかを答えよ.
(3)数列$\{a_n\}$と$\{b_n\}$の一般項を求めよ.
(4)複素数平面上の$3$点$0,\ z_n,\ z_{n+1}$を頂点とする三角形の周と内部を黒く塗りつぶしてできる図形を$T_n$とする.このとき,複素数平面上で$T_1,\ T_2,\ \cdots,\ T_n,\ \cdots$によって黒く塗りつぶされる領域の面積を求めよ.
スポンサーリンク

「図形」とは・・・

 まだこのタグの説明は執筆されていません。