タグ「回転」の検索結果

5ページ目:全201問中41問~50問を表示)
香川大学 国立 香川大学 2015年 第4問
(新課程履修者)複素数平面上に原点$\mathrm{O}(0)$と点$\mathrm{A}(1+\sqrt{3}i)$がある.ただし,$i$を虚数単位とする.このとき,次の問に答えよ.

(1)複素数$1+\sqrt{3}i$を極形式で表せ.ただし,偏角$\theta$は$0 \leqq \theta <2\pi$とする.
(2)点$\mathrm{A}$を原点のまわりに$\displaystyle -\frac{\pi}{3}$だけ回転した点を表す複素数を求めよ.
(3)虚軸上の点$\mathrm{B}(z)$が$\mathrm{OB}=\mathrm{AB}$を満たすとき,複素数$z$を求めよ.
(4)$(3)$で求めた$\mathrm{B}(z)$に対して,$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る円の中心を表す複素数を求めよ.
広島大学 国立 広島大学 2015年 第1問
座標平面上の点$\mathrm{P}(1,\ 1)$を中心とし,原点$\mathrm{O}$を通る円を$C_1$とする.$k$を正の定数として,曲線$\displaystyle y=\frac{k}{x} (x>0)$を$C_2$とする.$C_1$と$C_2$は$2$点で交わるとし,その交点を$\mathrm{Q}$,$\mathrm{R}$とするとき,直線$\mathrm{PQ}$は$x$軸に平行であるとする.点$\mathrm{Q}$の$x$座標を$q$とし,点$\mathrm{R}$の$x$座標を$r$とする.次の問いに答えよ.

(1)$k,\ q,\ r$の値を求めよ.
(2)曲線$C_2$と線分$\mathrm{OQ}$,$\mathrm{OR}$で囲まれた部分の面積$S$を求めよ.
(3)$x=1+\sqrt{2} \sin \theta$とおくことにより,定積分$\displaystyle \int_r^q \sqrt{2-(x-1)^2} \, dx$の値を求めよ.
(4)円$C_1$の原点$\mathrm{O}$を含まない弧$\mathrm{QR}$と曲線$C_2$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
金沢大学 国立 金沢大学 2015年 第2問
関数$f(x)=xe^x$について,次の問いに答えよ.

(1)関数$y=f(x)$について,増減および凹凸を調べ,そのグラフをかけ.ただし,必要ならば$\displaystyle \lim_{x \to -\infty}xe^x=0$を用いてもよい.
(2)不定積分$\displaystyle \int xe^x \, dx$,$\displaystyle \int x^2e^{2x} \, dx$をそれぞれ求めよ.
(3)$0 \leqq t \leqq 1$に対し$g(x)=f(x)-f(t)$とおく.$0 \leqq x \leqq 1$の範囲で,曲線$y=g(x)$と$x$軸ではさまれる部分を,$x$軸のまわりに$1$回転してできる回転体の体積を$V(t)$とする.$V(t)$を求めよ.
(4)$(3)$の$V(t)$が最小値をとるときの$t$の値を$a$とする.最小値$V(a)$と,$f(a)$の値を求めよ.ただし,$a$の値を求める必要はない.
香川大学 国立 香川大学 2015年 第5問
放物線$y=ax^2 (a>0)$を$y$軸のまわりに$1$回転させてできる容器$\mathrm{A}$と,容積$V$のコップ$\mathrm{B}$がある.このとき,次の問に答えよ.

(1)空の容器$\mathrm{A}$にコップ$\mathrm{B}$ \ $1$杯分の水を注いだら,水深が$1$となった.このとき,$a$を$V$を用いて表せ.ただし,回転軸は水面と垂直であるとする.
(2)あとコップ$\mathrm{B}$何杯分の水を容器$\mathrm{A}$に注いだら,水深が$2$となるか.
富山大学 国立 富山大学 2015年 第1問
曲線$\displaystyle C_1:y=\tan x \left( 0 \leqq x<\frac{\pi}{2} \right)$と曲線$\displaystyle C_2:y=2 \sin x \left( 0 \leqq x<\frac{\pi}{2} \right)$を考える.曲線$C_1$と曲線$C_2$で囲まれた図形を$x$軸の周りに$1$回転させてできる回転体の体積を求めよ.
山梨大学 国立 山梨大学 2015年 第2問
座標平面上において,曲線$C:y=e^{2x}$上の点$\mathrm{P}(a,\ e^{2a})$における接線$\ell$は原点$\mathrm{O}$を通るとする.

(1)$a$の値を求めよ.
(2)不定積分$\displaystyle \int \log t \, dt$および$\displaystyle \int (\log t)^2 \, dt$を求めよ.
(3)曲線$C$と直線$\ell$および$y$軸で囲まれた図形を$y$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
茨城大学 国立 茨城大学 2015年 第1問
$f(x)=2xe^{-x}$とおく.ただし,$e$は自然対数の底とする.以下の各問に答えよ.

(1)$0 \leqq x \leqq 3$の範囲で,関数$y=f(x)$の増減,極値,グラフの凹凸,変曲点を調べて,そのグラフの概形をかけ.
(2)正の実数$a$に対して,$\displaystyle I_a=\int_0^1 xe^{-ax} \, dx$,$\displaystyle J_a=\int_0^1 x^2e^{-ax} \, dx$とおく.$J_a$を$I_a$と$a$を用いて表せ.
(3)定積分$\displaystyle \int_0^1 f(x) \, dx$および$\displaystyle \int_0^1 \{f(x)\}^2 \, dx$を求めよ.
(4)曲線$y=f(x)$と,$3$直線$x=0$,$x=1$および$y=t$で囲まれた図形を,直線$y=t$を軸として$1$回転させてできる回転体の体積を$V(t)$とする.$t$を動かしたとき,$V(t)$の最小値とそのときの$t$の値を求めよ.
三重大学 国立 三重大学 2015年 第3問
関数$f(x)=e^{\sqrt{x}-1}-\sqrt{x} (x \geqq 0)$を考える.以下の問いに答えよ.

(1)$f(x) \geqq 0$を示せ.また等号が成立するような$x$の値を求めよ.
(2)曲線$y=f(x)$と$x$軸および$y$軸で囲まれた図形を$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
岐阜大学 国立 岐阜大学 2015年 第4問
関数$f(x)=e^{-x}$を考える.曲線$y=f(x)$を$C$とする.$t>0$として,曲線$C$上の点$(t,\ f(t))$における接線と$x$軸,$y$軸との交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.以下の問に答えよ.

(1)$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
(2)原点を$\mathrm{O}$とするとき,$\triangle \mathrm{OPQ}$の面積を$S$とする.$t$が変化するとき,$S$の最大値を求めよ.また,そのときの$2$点$\mathrm{P}$,$\mathrm{Q}$を通る直線$\ell$の方程式を求めよ.
(3)$C$と$(2)$で求めた$\ell$および$y$軸で囲まれた図形を$y$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2015年 第3問
次の問いに答えよ.

(1)$0<x<2\pi$の範囲において,方程式$\sin 5x=\sin x$の解をすべて求めよ.
(2)$(1)$で求めた解のうちで最小のものを$a$とする.曲線$y=\sin 5x-\sin x (0 \leqq x \leqq a)$と$x$軸で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
スポンサーリンク

「回転」とは・・・

 まだこのタグの説明は執筆されていません。