タグ「回転」の検索結果

17ページ目:全201問中161問~170問を表示)
明治大学 私立 明治大学 2011年 第4問
次の空欄$[ア]$から$[ス]$に当てはまるものを入れよ.ただし連続した空欄$[シス]$は$2$桁の数字をあらわす.

$a$を正の定数とする.$2$点$\mathrm{A}(0,\ a)$,$\mathrm{B}(t,\ t^2)$の間の距離を$L(t)$とする.$L(t)$は$\displaystyle a \leqq \frac{1}{2}$の場合は$t=[ア]$で最小値$[イ]$をとり,$\displaystyle a>\frac{1}{2}$の場合は$|t|=[ウ]$のとき最小値$[エ]$をとる.
$\mathrm{A}(0,\ a)$を中心とする半径$1$の円$C_1$と放物線$C_2:y=x^2$が$2$点で接しているとき$\displaystyle a=\frac{[オ]}{[カ]}$であり,接点の座標は
\[ \left( \frac{\sqrt{[キ]}}{[ク]},\ \frac{[ケ]}{[コ]} \right),\quad \left( -\frac{\sqrt{[キ]}}{[ク]},\ \frac{[ケ]}{[コ]} \right) \]
である.このとき,円$C_1$と放物線$C_2$で囲まれた図形(下の図の灰色の部分)を$y$軸のまわりに$1$回転して得られる回転体の体積は$\displaystyle \frac{[サ]}{[シス]}\pi$である.
ただし,$2$つの曲線が共有点$\mathrm{P}$をもち,$\mathrm{P}$における$2$つの曲線の接線が一致す
るとき,これら$2$つの曲線は$\mathrm{P}$で接しているといい,$\mathrm{P}$を接点という.
(図は省略)
学習院大学 私立 学習院大学 2011年 第3問
不等式
\[ x^2-x \leqq y \leqq x \]
で表される平面上の領域を直線$y=x$のまわりに$1$回転して得られる回転体の体積を求めよ.
関西大学 私立 関西大学 2011年 第1問
$a$を正の定数とする.座標平面上に曲線$C_1:y=ax^2$と曲線$C_2:x=y^2$がある.次の問いに答えよ.

(1)曲線$C_1$と$C_2$の交点のうち,原点と異なる点の座標を求めよ.
(2)曲線$C_1$と$C_2$で囲まれた図形を$D$とする.$D$を$x$軸のまわりに$1$回転してできる回転体の体積を$V_1$とする.また,$D$を$y$軸のまわりに$1$回転してできる回転体の体積を$V_2$とする.$V_1$と$V_2$をそれぞれ$a$を用いて表せ.
(3)$(2)$で求めた$V_1$と$V_2$について,$V_1 \geqq V_2$となるような$a$の値の範囲を求めよ.また,$V_1-V_2$を最大にする$a$の値を求めよ.
上智大学 私立 上智大学 2011年 第2問
底面の円の半径が$3 \; \mathrm{cm}$,高さが$6 \; \mathrm{cm}$の直円錐を考える.直円錐の頂点を$\mathrm{P}$,底面の円の中心を$\mathrm{Q}$とし,線分$\mathrm{PQ}$を$2:1$に内分する点を$\mathrm{O}$とする.底面の円の円周を$C_1$,$\mathrm{O}$を通り底面と平行な平面が直円錐と交わってできる円の円周を$C_2$とする.$2$点$\mathrm{A}$,$\mathrm{B}$がそれぞれ$C_1$,$C_2$上を頂点$\mathrm{P}$から見て左回りに移動している.点$\mathrm{A}$の速さは$3 \pi \,\mathrm{cm}/$秒,点$\mathrm{B}$の速さは$\pi \,\mathrm{cm}/$秒であり,時刻$t=0$において,$3$点$\mathrm{P}$,$\mathrm{B}$,$\mathrm{A}$は一直線上にあるとする.

(1)$\mathrm{A}$の角速度は$[コ] \pi$ラジアン$/$秒であり,$\mathrm{B}$の角速度は$\displaystyle \frac{[サ]}{[シ]} \pi$ラジアン$/$秒である.ただし,$\mathrm{A}$の角速度とは,動径$\mathrm{QA}$が$1$秒間に回転する角の大きさのことであり,$\mathrm{B}$の角速度とは,動径$\mathrm{OB}$が$1$秒間に回転する角の大きさのことである.
(2)線分$\mathrm{AB}$の長さを時刻$t$の関数で表すと
\[ \sqrt{[ス]-[セ] \cos \frac{\pi}{2}t } \mathrm{cm} \]
である.
(3)$\cos \angle \mathrm{AOB}$を時刻$t$の関数で表すと
\[ \frac{[ソ]}{\sqrt{[タ]}} \cos \frac{\pi}{2} t \]
である.
(4)三角形$\mathrm{AOB}$の面積を時刻$t$の関数で表すと
\[ \sqrt{[チ]-[ツ] \cos^2 \frac{\pi}{2}t } \mathrm{cm}^2 \]
である.
(5)$3$点$\mathrm{A}$,$\mathrm{O}$,$\mathrm{B}$を含む平面を$S$とする.$\mathrm{Q}$を通り,$S$と直交する直線を$\ell$とし,$\ell$と$S$の交点を$\mathrm{H}$とする.$\displaystyle t=\frac{1}{3}$のとき,線分$\mathrm{QH}$の長さは
\[ \frac{[テ]}{[ト]} \mathrm{cm} \]
である.
北星学園大学 私立 北星学園大学 2011年 第2問
$6$人座れる円形のテーブルが$2$つあり,ここに$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人を含む$10$人が各テーブルに$5$人ずつ無作為に着席するものとする.ただし,それぞれのテーブルについて回転して同じになる座り方は同じとみなす.以下の問に答えよ.

(1)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人が同じテーブルに座る座り方は何通りあるか.
(2)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人が同じテーブルに座る確率を求めよ.
(3)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人が同じテーブルで隣り合わせに座る確率を求めよ.
福岡大学 私立 福岡大学 2011年 第4問
曲線$y=-\cos x (0 \leqq x \leqq \pi)$を$y$軸のまわりに$1$回転させてできる形をした容器がある.ただし,単位は$\mathrm{cm}$とする.この容器に毎秒$1 \, \mathrm{cm}^3$ずつ水を入れたとき,$t$秒後の水面の半径を$r \, \mathrm{cm}$とし,水の体積を$V \, \mathrm{cm}^3$とする.水を入れ始めてからあふれるまでの時間内で考えるとき,次の問いに答えよ.

(1)水の体積$V$を$r$の式で表せ.
(2)水を入れ始めて$t$秒後の$r$の増加する速度$\displaystyle \frac{dr}{dt}$を$r$の式で表せ.
福岡大学 私立 福岡大学 2011年 第2問
次の$[ ]$をうめよ.

(1)$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{M}$,辺$\mathrm{AC}$を$3:2$に内分する点を$\mathrm{N}$,線分$\mathrm{BN}$と$\mathrm{CM}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とするとき,ベクトル$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表すと,$\overrightarrow{\mathrm{AP}}=[ ]$となる.さらに,$\mathrm{AB}=9$,$\mathrm{AC}=6$,$\mathrm{AP}=4$のとき,$\overrightarrow{b}$と$\overrightarrow{c}$の内積$\overrightarrow{b} \cdot \overrightarrow{c}$の値は$[ ]$である.
(2)点$(2,\ -3)$を点$(1,\ -1)$に移し,点$(-1,\ 4)$を点$(7,\ -2)$に移す$1$次変換$f$を表す行列$A$を求めると,$A=[ ]$である.また,原点を中心として一定の角だけ回転する回転移動$g$が点$(3,\ 3)$を点$(1+2 \sqrt{2},\ 1-2 \sqrt{2})$に移すとき,$g$を表す行列$B$を求めると,$B=[ ]$である.
(3)数列$\{a_n\}$を$\displaystyle a_1=\frac{1}{2}$,$a_2=1$,$a_{n+2}=a_{n+1}-a_n (n=1,\ 2,\ 3,\ \cdots)$で定めるとき,$a_7,\ a_8$の値を求めると,$(a_7,\ a_8)=[ ]$である.また,$\displaystyle \sum_{k=1}^\infty \frac{a_k}{2^k}$の値は$[ ]$である.
津田塾大学 私立 津田塾大学 2011年 第1問
次の問いに答えよ.

(1)$\displaystyle f(x)=e^{-x}+\int_0^x e^{-(x-t)} \sin t \, dt$とする.このとき,$f^\prime(x)+f(x)=\sin x$が成り立つことを示せ.
(2)座標空間において,原点$\mathrm{O}$と点$\mathrm{A}(1,\ 1,\ 1)$を通る直線を$\ell$とし,原点$\mathrm{O}$を通り直線$\ell$とのなす角が$\displaystyle \frac{\pi}{3}$である直線の$1$つを$m$とする.直線$m$を直線$\ell$のまわりに$1$回転してできる図形を$S$とする.点$\mathrm{P}(x,\ y,\ z)$が$S$上にあるならば,
\[ x^2+y^2+z^2+8xy+8yz+8zx=0 \]
が成り立つことを示せ.
青山学院大学 私立 青山学院大学 2011年 第5問
曲線$y=e^{x^2}-1 (x \geqq 0)$を$y$軸のまわりに回転させてできる容器がある.この容器に,時刻$t$における水の体積が$vt$となるように,単位時間あたり$v$の割合で水を注入する.ただし,$v$は正の定数であり,$y$軸の負の方向を鉛直下方とする.

(1)不定積分$\displaystyle \int \log (y+1) \, dy$を求めよ.
(2)水面の高さが$h$となったときの容器内の水の体積$V$を,$h$を用いて表せ.ただし,$h$は容器の底から測った高さである.
(3)水面の高さが$e^{10}-1$となった瞬間における,水面の高さの変化率$\displaystyle \frac{dh}{dt}$を求めよ.
大阪市立大学 公立 大阪市立大学 2011年 第1問
$a$は実数で$0 < a < 1$とする.座標平面上の第$1$象限にある曲線$\displaystyle y =\frac{1}{x}$と$2$直線$y = x,\ y = ax$で囲まれる部分$P(a)$の面積を$S(a)$とする.次の問いに答えよ.

(1)$S(a)$を$a$を用いて表せ.
(2)$\displaystyle 2S(\frac{1}{e}) \leqq S(a) \leqq 2S(\frac{1}{e})+1$となる$a$の範囲を求めよ.
(3)$P(a)$を$x$軸の周りに回転して得られる回転体の体積$V(a)$と$\displaystyle \lim_{a \to 0} V(a)$を求めよ.
スポンサーリンク

「回転」とは・・・

 まだこのタグの説明は執筆されていません。