タグ「回転体の体積」の検索結果

8ページ目:全273問中71問~80問を表示)
長崎大学 国立 長崎大学 2015年 第3問
以下の問いに答えよ.

(1)次の関係式によって定められる数列$\{a_n\}$について,一般項$a_n$と$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
\[ \left\{ \begin{array}{ll}
a_1=1 \\
a_{n+1}-(\sqrt{2}+1)a_n=1 & (n=1,\ 2,\ 3,\ \cdots)
\end{array} \right. \]
(2)次の極限値を求めよ.
\[ \lim_{n \to \infty} \left( \frac{1}{n^2+1^2}+\frac{2}{n^2+2^2}+\frac{3}{n^2+3^2}+\cdots +\frac{n}{n^2+n^2} \right) \]
(3)曲線$C:\sqrt{x}+\sqrt{y}=1$と$x$軸および$y$軸で囲まれた下図の図形を,$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
(図は省略)
長崎大学 国立 長崎大学 2015年 第3問
以下の問いに答えよ.

(1)次の関係式によって定められる数列$\{a_n\}$について,一般項$a_n$と$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
\[ \left\{ \begin{array}{ll}
a_1=1 \\
a_{n+1}-(\sqrt{2}+1)a_n=1 & (n=1,\ 2,\ 3,\ \cdots)
\end{array} \right. \]
(2)次の極限値を求めよ.
\[ \lim_{n \to \infty} \left( \frac{1}{n^2+1^2}+\frac{2}{n^2+2^2}+\frac{3}{n^2+3^2}+\cdots +\frac{n}{n^2+n^2} \right) \]
(3)曲線$C:\sqrt{x}+\sqrt{y}=1$と$x$軸および$y$軸で囲まれた下図の図形を,$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
(図は省略)
長崎大学 国立 長崎大学 2015年 第3問
以下の問いに答えよ.

(1)次の関係式によって定められる数列$\{a_n\}$について,一般項$a_n$と$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
\[ \left\{ \begin{array}{ll}
a_1=1 \\
a_{n+1}-(\sqrt{2}+1)a_n=1 & (n=1,\ 2,\ 3,\ \cdots)
\end{array} \right. \]
(2)次の極限値を求めよ.
\[ \lim_{n \to \infty} \left( \frac{1}{n^2+1^2}+\frac{2}{n^2+2^2}+\frac{3}{n^2+3^2}+\cdots +\frac{n}{n^2+n^2} \right) \]
(3)曲線$C:\sqrt{x}+\sqrt{y}=1$と$x$軸および$y$軸で囲まれた下図の図形を,$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
(図は省略)
電気通信大学 国立 電気通信大学 2015年 第1問
関数
\[ f(x)=x+\sin 2x \quad (0 \leqq x \leqq \pi) \]
に対して,曲線$C:y=f(x)$を考える.以下の問いに答えよ.

(1)曲線$C$上の点$\displaystyle \left( \frac{\pi}{4},\ f \left( \frac{\pi}{4} \right) \right)$における$C$の接線$\ell$の方程式を求めよ.
(2)関数$f(x)$の増減を調べ,$f(x)$の極値を求めよ.
(3)曲線$C$,$y$軸および接線$\ell$で囲まれた図形の面積$S$を求めよ.
(4)不定積分$\displaystyle \int x \sin 2x \, dx$を求めよ.ただし,積分定数は省略してもよい.
(5)曲線$C$,$x$軸および直線$x=\pi$で囲まれた図形を$x$軸のまわりに$1$回転させてできる立体の体積$V$を求めよ.
電気通信大学 国立 電気通信大学 2015年 第3問
次の関数$f(x),\ g(x)$に対して,以下の問いに答えよ.ただし,$\log x$は$e$を底とする自然対数を表す.
\[ f(x)=\frac{x+1}{\sqrt{x^2+1}},\quad g(x)=\log (x+\sqrt{x^2+1}) \]

(1)極限値$\displaystyle \lim_{x \to \infty} f(x),\ \lim_{x \to -\infty} f(x)$をそれぞれ求めよ.
(2)導関数$f^\prime(x)$を求め,関数$f(x)$の増減を調べよ.さらに,$f(x)$の最大値を求めよ.
(3)次の方程式がただ$1$つの実数解を持つような定数$m$の条件を求めよ.
\[ m \sqrt{x^2+1}=x+1 \]
(4)導関数$g^\prime(x)$を求めよ.さらに,$xy$平面上において,曲線$y=f(x)$,$x$軸および$y$軸で囲まれた図形を$D$とする.図形$D$の面積$S$を求めよ.
(5)図形$D$を$x$軸のまわりに$1$回転させてできる立体の体積$V$を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2015年 第3問
二次関数$f(x)=x^2+ax+b$に関する以下の問いに答えよ.ただし,関数$f(x)$の導関数を$f^\prime(x)$とする.

【補足説明】$(2)$~$(5)$は,$(1)$で得られた$f(x)$を用いて解答すること.

(1)$f(x)$が$2f(x)=xf^\prime(x)+6$を満たすとき,$a=0$,$b=3$となることを示せ.
(2)点$(0,\ -1)$から曲線$y=f(x)$に引いた$2$本の接線が,$L_1:y=4x-1$,$L_2:y=-4x-1$になることを示せ.
(3)$2$本の接線$L_1,\ L_2$のなす角のうち鋭角を$\theta$とするとき,$\cos \theta$の値を求めよ.
(4)曲線$y=f(x)$と$2$本の接線$L_1,\ L_2$で囲まれた部分の面積を求めよ.
(5)曲線$y=f(x)$と$2$本の接線$L_1,\ L_2$で囲まれた部分を,$y$軸のまわりに$1$回転して得られる回転体の体積を求めよ.
福島大学 国立 福島大学 2015年 第3問
次の問いに答えなさい.

(1)$\displaystyle \sum_{k=1}^n \frac{k}{2^k}$を求めなさい.
(2)定積分$\displaystyle \int_0^1 \frac{dx}{x^2-2x-3}$を求めなさい.

(3)曲線$y=\sqrt{x^2-1}$の$1 \leqq x \leqq 2$の部分を$y$軸のまわりに回転してできる回転体の体積を求めなさい.
(4)曲線$y=xe^x+1$の$x=1$に対応する点における接線と法線の方程式を求めなさい.
東京医科歯科大学 国立 東京医科歯科大学 2015年 第3問
座標平面上で次のように媒介変数表示される曲線$C$を考える.
\[ \left\{ \begin{array}{l}
x=|\cos t| \cos^3 t \\
y=|\sin t| \sin^3 t \phantom{\frac{\mkakko{}}{2}}
\end{array} \right. \hspace{-8mm}(0 \leqq t \leqq 2\pi) \]
このとき以下の各問いに答えよ.

(1)次の条件$(*)$を満たす第$1$象限内の定点$\mathrm{F}$の座標を求めよ.
$(*)$ 第$1$象限内で$C$上にあるすべての点$\mathrm{P}$について,$\mathrm{P}$から直線$x+y=0$に下ろした垂線を$\mathrm{PH}$とするとき,つねに$\mathrm{PF}=\mathrm{PH}$となる.
(2)点$\mathrm{P}$が$C$全体を動くとき,$\mathrm{P}$と$(1)$の定点$\mathrm{F}$を結ぶ線分$\mathrm{PF}$が通過する領域を図示し,その面積を求めよ.
(3)$(2)$の領域を$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2015年 第1問
座標平面上で次のように媒介変数表示される曲線$C$を考える.
\[ \left\{ \begin{array}{l}
x=|\cos t| \cos^3 t \\
y=|\sin t| \sin^3 t \phantom{\frac{\mkakko{}}{2}}
\end{array} \right. \hspace{-8mm}(0 \leqq t \leqq 2\pi) \]
このとき以下の各問いに答えよ.

(1)次の条件$(*)$を満たす第$1$象限内の定点$\mathrm{F}$の座標を求めよ.
$(*)$ 第$1$象限内で$C$上にあるすべての点$\mathrm{P}$について,$\mathrm{P}$から直線$x+y=0$に下ろした垂線を$\mathrm{PH}$とするとき,つねに$\mathrm{PF}=\mathrm{PH}$となる.
(2)点$\mathrm{P}$が$C$全体を動くとき,$\mathrm{P}$と$(1)$の定点$\mathrm{F}$を結ぶ線分$\mathrm{PF}$が通過する領域を図示し,その面積を求めよ.
(3)$(2)$の領域を$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
$a>0$とし,関数$f(x)$を
\[ f(x)=-a \cos x+\frac{1}{2}a^2 \cos 2x \qquad (-\pi<x<\pi) \]
と定める.

(1)$f(x)$の最小値は,$a \leqq [ア]$のとき$[イ]$であり,$a \geqq [ア]$のとき$[ウ]$である.ただし,$[ア]$には数,$[イ]$と$[ウ]$には$a$の多項式を記入すること.
(2)曲線$y=f(x)$が$x$軸と接するのは$a=[エ]$のときである.
(3)$a=[エ]$とする.曲線$y=f(x)$と$x$軸で囲まれた部分の面積は$[オ]$であり,その部分を$x$軸の周りに$1$回転させてできる立体の体積は$[カ]$である.
スポンサーリンク

「回転体の体積」とは・・・

 まだこのタグの説明は執筆されていません。