タグ「回転体の体積」の検索結果

27ページ目:全273問中261問~270問を表示)
北海学園大学 私立 北海学園大学 2010年 第3問
曲線$C:y=e^{ax} (a \neq 0)$について次の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)$C$上の点$(t,\ e^{at})$における接線の方程式を求めよ.さらに,この接線が原点$\mathrm{O}$を通るとき,この接線を$\ell$と表す.接線$\ell$の方程式を求めよ.
(2)接線$\ell$,曲線$C$および$y$軸で囲まれた図形$D$の面積が$1$となるような$a$の値を求めよ.
(3)図形$D$を$x$軸のまわりに回転してできる立体の体積が$\pi$となるような$a$の値を求めよ.
東北学院大学 私立 東北学院大学 2010年 第4問
$2$つの曲線$y=e \log x$,$y=ax^2$が共有点を持ち,その共有点における接線が一致するとき以下の問いに答えよ.ただし$e$は自然対数の底とする.

(1)定数$a$の値を求めよ.
(2)この$2$つの曲線と$x$軸で囲まれた図形の面積$S$を求めよ.
(3)$(2)$の図形を$y$軸の周りに$1$回転してできる回転体の体積$V$を求めよ.
学習院大学 私立 学習院大学 2010年 第2問
第一象限内にあって$2$つの曲線
\[ y=x^2-1,\quad x^2+y^2+2 \sqrt{3}y-1=0 \]
と$2$つの直線
\[ y=3,\quad x=0 \]
とで囲まれる図形を$D$とする.

(1)$D$の面積を求めよ.
(2)$D$を$y$軸に関して$1$回転して得られる回転体の体積を求めよ.
日本女子大学 私立 日本女子大学 2010年 第3問
$a$を正の実数とする.曲線$\displaystyle C:y=\frac{1}{\sqrt{x}}$上の点$\displaystyle \left( a^2,\ \frac{1}{a} \right)$における接線を$\ell$とする.$\ell$と$x$軸の交点の$x$座標を$b$とする.

(1)$b$を$a$の式で表せ.
(2)曲線$C$と接線$\ell$および直線$x=b$で囲まれた図形を,$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
津田塾大学 私立 津田塾大学 2010年 第4問
$x \geqq 0$の範囲で関数$y=\sqrt{x}e^{-x}$のグラフを$C$とする.

(1)$C$の概形を描け.ただし$\displaystyle \lim_{x \to \infty} \sqrt{x}e^{-x}=0$は証明せずに使ってよい.
(2)$M>0$とする.曲線$C$と$x$軸で囲まれた図形を$x$軸のまわりに$1$回転してできる立体のうち,$x \leqq M$の部分の体積$V(M)$を求めよ.
(3)極限値$\displaystyle \lim_{M \to \infty}V(M)$を求めよ.
首都大学東京 公立 首都大学東京 2010年 第2問
以下の問いに答えなさい.

(1)$s$を$0 \leqq s \leqq \sqrt{2}$を満たす実数とする.直線$y = x$と直線$y = -x+ \sqrt{2}s$の交点をPとする.直線$y = -x+\sqrt{2}s$と曲線$y =-x^2 +2x$の交点で$x$座標が1以下である点をQとし,Qの$x$座標を$t$とする.このとき,点Pと点Qの距離および$s$を,$t$を用いて表しなさい.
(2)直線$y = x$と曲線$y =-x^2 +2x$で囲まれた図形を直線$y = x$のまわりに回転させてできる立体の体積を求めなさい.
名古屋市立大学 公立 名古屋市立大学 2010年 第2問
$xy$平面上に,原点Oを中心とする半径1の円$C$があり,点Pは円$C$の周上を動く.また点Pを中心とする半径$r$の円$D$の周上には点Qがある.いま,点Pが点$(1,\ 0)$から円$C$上を反時計回りに動き,同時に点Qは点$(1+r,\ 0)$から円$D$上を時計回りに動く.ただし,点Pは円$C$上で,点Qは円$D$上でともに等速円運動を行い,点Pが円$C$を一周したとき点Qも円$D$を一周する.次の問いに答えよ.

(1)点Pが円$C$を一周したとき,点Qの軌跡はどのような図形になるか,図示せよ.
(2)$(1)$の図形を$y$軸のまわりに回転させた時にできる立体の体積$V$を$r$の関数として表し,そのグラフの概形を描け.
熊本県立大学 公立 熊本県立大学 2010年 第3問
$0 \leqq r \leqq l$のとき,円$(x-m)^2+(y-l)^2=r^2$によって囲まれる部分を$x$軸の周りに$1$回転してできる立体の体積を求めなさい.
大阪府立大学 公立 大阪府立大学 2010年 第1問
$\displaystyle f(x)=\frac{4}{3+4x^2}$とする.次の問いに答えよ.

(1)直線$y=1$と曲線$y=f(x)$の交点のうち,$x$座標が正であるものをPとする.点Pにおける$y=f(x)$の接線の方程式を求めよ.
(2)直線$y=1$と曲線$y=f(x)$で囲まれた図形の面積を求めよ.
(3)直線$y=1$と曲線$y=f(x)$で囲まれた図形を$x$軸のまわりに1回転させてできる回転体の体積を求めよ.
熊本県立大学 公立 熊本県立大学 2010年 第3問
$0 \leqq r \leqq l$のとき,円$(x-m)^2+(y-l)^2=r^2$によって囲まれる部分を$x$軸の周りに$1$回転してできる立体の体積を求めなさい.
スポンサーリンク

「回転体の体積」とは・・・

 まだこのタグの説明は執筆されていません。