タグ「回転体の体積」の検索結果

24ページ目:全273問中231問~240問を表示)
東京海洋大学 国立 東京海洋大学 2011年 第5問
$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$において,曲線$y=\cos x$と$x$軸および$y$軸で囲まれた図形を$D$とする.

(1)$D$を$x$軸のまわりに$1$回転して得られる回転体の体積$V_1$を求めよ.
(2)不定積分$\displaystyle \int x \cos x \, dx$と$\displaystyle \int x^2 \sin x \, dx$を求めよ.
(3)$D$を$y$軸のまわりに$1$回転して得られる回転体の体積$V_2$を求めよ.
早稲田大学 私立 早稲田大学 2011年 第1問
次の$[ ]$にあてはまる数または数式を解答用紙の所定欄に記入せよ.

(1)平面上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が点$\mathrm{O}$を中心とする半径$1$の円周上にあり,
\[ 3 \overrightarrow{\mathrm{OA}}+7 \overrightarrow{\mathrm{OB}}+5 \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}} \]
を満たしている.このとき線分$\mathrm{AB}$の長さは[ア]である.
(2)$xy$平面上の曲線$y=e^x$と$y$軸および直線$y=e$で囲まれた図形を$y$軸のまわりに$1$回転してできる回転体の体積は[イ]である.
(3)碁石を$n$個一列に並べる並べ方のうち,黒石が先頭で白石どうしは隣り合わないような並べ方の総数を$a_n$とする.ここで,$a_1=1$,$a_2=2$である.
(4)立方体の各辺の中点は全部で$12$個ある.頂点がすべてこれら$12$個の点のうちのどれかであるような正多角形は全部で[エ]個ある.
早稲田大学 私立 早稲田大学 2011年 第4問
$a>0$とし,$x$-$y$平面上に3点O$(0,\ 0)$,A$(a,\ 0)$,P$(x,\ y)$をとる.$l$を与えられた正定数として,Pが
\[ 2\text{PO}^2 + \text{PA}^2 = 3l^2 \dotnum{*} \]
をみたすとする.このとき,次の各問に答えよ.

(1)\maru{*}をみたすPの集合が空集合とならないための$a$の条件を求め,そのときのP$(x,\ y)$の軌跡を表す方程式を求めよ.
(2)3点O,\ A,\ Pが一直線上にないようなPが存在するとき,OAを軸として,$\triangle$POAを回転して立体をつくる.この立体の体積が最大になるときのPの$x$座標と最大の体積$V$を,$a$を用いて表せ.
(3)(2)で求めた体積$V$を最大とする$a$の値とそのときの最大の体積を求めよ.
北海学園大学 私立 北海学園大学 2011年 第4問
点$\mathrm{P}$を直線$\ell_1:y=x$上の点とし,$2$点$\mathrm{A}$,$\mathrm{B}$の座標をそれぞれ$(-1,\ 0)$,$(0,\ 1)$とする.$\mathrm{P}$を通り$\ell_1$に直交する直線を$\ell_2$とする.また,$\ell_2$と$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線との交点を$\mathrm{Q}$とする.$\mathrm{P}$の$x$座標を$a$とするとき,次の問いに答えよ.ただし,$\displaystyle 0<a<\frac{1}{2}$とする.

(1)$\ell_2$の方程式を$a$を用いて表せ.
(2)$\mathrm{Q}$の座標を$a$を用いて表せ.
(3)$\mathrm{Q}$から$x$軸に下ろした垂線と$x$軸との交点を$\mathrm{R}$とする.四角形$\mathrm{OPQR}$を$x$軸の周りに$1$回転してできる回転体の体積$V$を$a$を用いて表せ.
明治大学 私立 明治大学 2011年 第4問
次の空欄$[ア]$から$[ス]$に当てはまるものを入れよ.ただし連続した空欄$[シス]$は$2$桁の数字をあらわす.

$a$を正の定数とする.$2$点$\mathrm{A}(0,\ a)$,$\mathrm{B}(t,\ t^2)$の間の距離を$L(t)$とする.$L(t)$は$\displaystyle a \leqq \frac{1}{2}$の場合は$t=[ア]$で最小値$[イ]$をとり,$\displaystyle a>\frac{1}{2}$の場合は$|t|=[ウ]$のとき最小値$[エ]$をとる.
$\mathrm{A}(0,\ a)$を中心とする半径$1$の円$C_1$と放物線$C_2:y=x^2$が$2$点で接しているとき$\displaystyle a=\frac{[オ]}{[カ]}$であり,接点の座標は
\[ \left( \frac{\sqrt{[キ]}}{[ク]},\ \frac{[ケ]}{[コ]} \right),\quad \left( -\frac{\sqrt{[キ]}}{[ク]},\ \frac{[ケ]}{[コ]} \right) \]
である.このとき,円$C_1$と放物線$C_2$で囲まれた図形(下の図の灰色の部分)を$y$軸のまわりに$1$回転して得られる回転体の体積は$\displaystyle \frac{[サ]}{[シス]}\pi$である.
ただし,$2$つの曲線が共有点$\mathrm{P}$をもち,$\mathrm{P}$における$2$つの曲線の接線が一致す
るとき,これら$2$つの曲線は$\mathrm{P}$で接しているといい,$\mathrm{P}$を接点という.
(図は省略)
名城大学 私立 名城大学 2011年 第4問
曲線$y=a \log x (a>0)$と$x$軸および直線$x=e$で囲まれた部分を$D$とする.$D$を$x$軸のまわりに$1$回転してできる回転体の体積を$V_1$,$D$を$y$軸のまわりに$1$回転してできる回転体の体積を$V_2$とする.ただし,$e$は自然対数の底とする.

(1)$D$を図示せよ.
(2)$\displaystyle \int_1^e \log x \, dx$を求めよ.
(3)$V_1$と$V_2$を求めよ.
(4)$V_1=V_2$となるときの$a$の値を求めよ.
龍谷大学 私立 龍谷大学 2011年 第4問
$-\pi \leqq x \leqq \pi$の範囲で関数
\[ f(x)=\cos x+\sqrt{3} \sin x-1 \]
を考える.

(1)$f(x)=0$を満たす$x$を求めなさい.
(2)$y=f(x)$のグラフと$x$軸とで囲まれた図形を$x$軸のまわりに$1$回転させてできる立体の体積を求めなさい.
学習院大学 私立 学習院大学 2011年 第3問
不等式
\[ x^2-x \leqq y \leqq x \]
で表される平面上の領域を直線$y=x$のまわりに$1$回転して得られる回転体の体積を求めよ.
関西大学 私立 関西大学 2011年 第1問
$a$を正の定数とする.座標平面上に曲線$C_1:y=ax^2$と曲線$C_2:x=y^2$がある.次の問いに答えよ.

(1)曲線$C_1$と$C_2$の交点のうち,原点と異なる点の座標を求めよ.
(2)曲線$C_1$と$C_2$で囲まれた図形を$D$とする.$D$を$x$軸のまわりに$1$回転してできる回転体の体積を$V_1$とする.また,$D$を$y$軸のまわりに$1$回転してできる回転体の体積を$V_2$とする.$V_1$と$V_2$をそれぞれ$a$を用いて表せ.
(3)$(2)$で求めた$V_1$と$V_2$について,$V_1 \geqq V_2$となるような$a$の値の範囲を求めよ.また,$V_1-V_2$を最大にする$a$の値を求めよ.
久留米大学 私立 久留米大学 2011年 第4問
整数$k$に対して,曲線$y=4e^{-x}$と$x$軸,および直線$x=k$と$x=k+1$とで囲まれた図形の面積を$S_k$とする.同じく,この図形を$x$軸のまわりに回転してできる立体の体積を$V_k$とする.このとき,$S_k=[$7$]$,$V_k=[$8$]$であり,無限級数$\displaystyle \sum_{n=1}^\infty S_n$は$[$9$]$に,$\displaystyle \sum_{n=1}^\infty V_n$は$[$10$]$に収束する.
スポンサーリンク

「回転体の体積」とは・・・

 まだこのタグの説明は執筆されていません。