タグ「回転体の体積」の検索結果

22ページ目:全273問中211問~220問を表示)
青山学院大学 私立 青山学院大学 2012年 第5問
曲線$\displaystyle \frac{(x-5)^2}{4}+\frac{y^2}{9}=1$を$C$とする.

(1)曲線$C$の概形を描け.
(2)曲線$C$で囲まれた図形を$x$軸のまわりに$1$回転してできる回転体の体積$V_1$を求めよ.
(3)曲線$C$で囲まれた図形を$y$軸のまわりに$1$回転してできる回転体の体積$V_2$を求めよ.
大阪工業大学 私立 大阪工業大学 2012年 第4問
関数$f(x)=x \sqrt{1-x} (0 \leqq x \leqq 1)$について,次の問いに答えよ.

(1)$f(x)$を微分せよ.
(2)$f(x)$の最大値を求めよ.
(3)曲線$y=f(x)$と$x$軸で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
東京理科大学 私立 東京理科大学 2012年 第3問
$a$を$a>2$であるような実数とする.座標平面上で,曲線$\displaystyle y=\frac{1}{x}$を$C_1$とし,点$(a,\ a)$を中心とし点$(1,\ 1)$を通る円を$C_2$とする.曲線$C_1$と円$C_2$の点$(1,\ 1)$以外の共有点のうち,$x$座標が$1$より小さいものを$\mathrm{B}$とする.点$\mathrm{B}$から直線$y=x$に下ろした垂線と直線$y=x$の交点を$\mathrm{H}$とする.

(1)円$C_2$の方程式を求めよ.
(2)点$\mathrm{H}$の座標を求めよ.また,点$\mathrm{H}$と点$(1,\ 1)$の距離を求めよ.
(3)$t$を正の実数とする.直線$y=x$上にあり点$(1,\ 1)$からの距離が$t$である点のうち,$x$座標が$1$より大きいものを$\mathrm{P}$とする.点$\mathrm{P}$を通り直線$y=x$に垂直な直線と曲線$C_1$の交点のうち,$x$座標が$1$より小さいものを$\mathrm{Q}$とする.このとき,線分$\mathrm{PQ}$の長さを$t$を用いて表せ.
(4)直線$y=x$と線分$\mathrm{BH}$,および曲線$C_1$で囲まれた部分を,直線$y=x$の周りに$1$回転させてできる立体の体積を求めよ.
大阪府立大学 公立 大阪府立大学 2012年 第2問
$k$と$a$を正の定数とする.曲線$\displaystyle C:y=\frac{x}{x+k} \ (x \geqq 0)$と直線$x=a$および$x$軸で囲まれた図形を$x$軸のまわりに1回転してできる回転体の体積を$V_1$とする.また,曲線$C$と直線$\displaystyle y=\frac{a}{a+k}$および$y$軸で囲まれた図形を$y$軸のまわりに1回転してできる回転体の体積を$V_2$とする.このとき,比$\displaystyle \frac{V_2}{V_1}$を求めよ.
兵庫県立大学 公立 兵庫県立大学 2012年 第2問
$k$を正の定数とする.放物線$y=kx^2$と直線$y=1$で囲まれた図形$D$を考える.この図形$D$を$x$軸のまわりに$1$回転した立体の体積を$V_1$,$y$軸のまわりに$1$回転してできる立体の体積を$V_2$とする.$V_1=V_2$となるような$k$の値を定めよ.
岐阜薬科大学 公立 岐阜薬科大学 2012年 第6問
円$x^2+(y-a)^2=r^2$で囲まれた図形を$x$軸のまわりに$1$回転してできる立体の体積を$V(a)$とするとき,次の問いに答えよ.ただし,$a,\ r$は正の実数とする.

(1)$a \geqq r$のとき,$V(a)$を求めよ.
(2)$0<a<r$とする.

(i) $\displaystyle 0<\theta<\frac{\pi}{2}$のとき,$\sin \theta<\theta<\tan \theta$が成り立つ.このことを用いて,次の不等式が成り立つことを示せ.
\[ \frac{(r+a) \sqrt{r^2-a^2}}{2}<\int_0^{\sqrt{r^2-a^2}} \sqrt{r^2-x^2} \, dx<\frac{(r^2+a^2) \sqrt{r^2-a^2}}{2a} \]
(ii) $(ⅰ)$の結果を用いて,
\[ \frac{2\pi (a-r)(a+r) \sqrt{r^2-a^2}}{3}<V(a)-2\pi^2ar^2<\frac{2\pi (a-r)(a-2r) \sqrt{r^2-a^2}}{3} \]
が成り立つことを示せ.
福島県立医科大学 公立 福島県立医科大学 2012年 第2問
以下の各問いに答えよ.

(1)$e$は自然対数の底とし,$a$は正の実数とする.以下の問いに答えよ.

(i) $x>0$で定義された関数$f(x)=a \log x-x$の増減を調べ,極値を求めよ.
(ii) $\displaystyle \lim_{x \to \infty} x^a e^{-2x}=0$を示せ.
(iii) 極限値$\displaystyle \lim_{x \to \infty} \int_0^x t^2e^{-2t} \, dt$を求めよ.

(2)$0<t<\pi$とする.曲線$\displaystyle C:y=\sin \frac{x}{2} (0 \leqq x \leqq \pi)$上の点$\displaystyle \mathrm{P} \left( t,\ \sin \frac{t}{2} \right)$における$C$の接線を$\ell_1$,点$\mathrm{P}$と原点を通る直線を$\ell_2$とする.以下の問いに答えよ.

(i) 接線$\ell_1$と$x$軸との交点の$x$座標を$t$を用いて表せ.
(ii) $j=1,\ 2$について,直線$\ell_j$,$x$軸および直線$x=t$で囲まれた三角形を$x$軸のまわりに回転させてできた円錐の体積を$V_j$とする.また,曲線$C$,$x$軸および直線$x=t$で囲まれた図形を$x$軸のまわりに回転させてできた回転体の体積を$V$とする.$V_1$,$V_2$および$V$を$t$を用いて表せ.
(iii) 極限値$\displaystyle \lim_{\theta \to 0} \frac{\theta-\sin \theta}{\theta^3}$を求めよ.ただし,$\displaystyle \lim_{\theta \to 0} \frac{\sin \theta}{\theta}=1$は利用してよい.
埼玉大学 国立 埼玉大学 2011年 第1問
$2$つの放物線$y=x^2$および$y^2=8x$を考える.次の問いに答えよ.

(1)$2$つの放物線の共有点を求めよ.
(2)$2$つの放物線によって囲まれた部分を$S$とする.$S$の面積を求めよ.
(3)$S$を$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
名古屋大学 国立 名古屋大学 2011年 第1問
$\displaystyle -\frac{1}{4}<s<\frac{1}{3}$とする.$xyz$空間内の平面$z = 0$の上に長方形
\[ R_s = \{f(x,\ y,\ 0) \; | \; 1 \leqq x \leqq 2+4s,\ 1 \leqq y \leqq 2-3s\} \]
がある.長方形$R_s$を$x$軸のまわりに$1$回転してできる立体を$K_s$とする.

(1)立体$K_s$の体積$V(s)$が最大となるときの$s$の値,およびそのときの$V(s)$の値を求めよ.
(2)$s$を$(1)$で求めた値とする.このときの立体$K_s$を$y$軸のまわりに$1$回転してできる立体$L$の体積を求めよ.
東京工業大学 国立 東京工業大学 2011年 第4問
平面上に一辺の長さが1の正方形$D$および$D$と交わる直線がある.この直線を軸に$D$を回転して得られる回転体について以下の問に答えよ.

(1)$D$と同じ平面上の直線$\ell$は$D$のどの辺にも平行でないものとする.軸とする直線は$\ell$と平行なものの中で考えるとき,回転体の体積を最大にする直線は$D$と唯1点で交わることを示せ.
(2)$D$と交わる直線を軸としてできるすべての回転体の体積の中で最大となる値を求めよ.
スポンサーリンク

「回転体の体積」とは・・・

 まだこのタグの説明は執筆されていません。