タグ「回転体の体積」の検索結果

17ページ目:全273問中161問~170問を表示)
滋賀医科大学 国立 滋賀医科大学 2013年 第4問
$xy$平面において,連立不等式
\[ x^2+y^2 \leqq 1,\quad x \geqq 0,\quad y \geqq 0 \]
で定まる図形を$S$とする.$t$を$0<t<1$となる定数とし,$S$を直線$y=t$で$2$つの部分に切断する.$S_1$を$S$と領域$y \geqq t$の共通部分,$S_2$を$S$と領域$y \leqq t$の共通部分とする.

(1)図形$S_1,\ S_2$を描け.
(2)$S_1,\ S_2$を$y$軸の周りに$1$回転させてできる立体をそれぞれ$V_1,\ V_2$とする.不等式
\[ \frac{(S_1 \ \text{の面積})}{(S_2 \ \text{の面積})} \geqq \frac{(V_1 \ \text{の体積})}{(V_2 \ \text{の体積})} \]
を示せ.
九州工業大学 国立 九州工業大学 2013年 第1問
$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$の範囲において,曲線$C_1:y=\sin 2x$と曲線$C_2:y=\cos x$の交点の$x$座標を$a,\ b,\ c \ (a<b<c)$とする.以下の問いに答えよ.

(1)$a,\ b,\ c$の値を求めよ.
(2)交点$(b,\ \sin 2b)$における$2$つの曲線$C_1$と$C_2$のそれぞれの接線は垂直ではないことを示せ.
(3)$a \leqq x \leqq b$の範囲で$2$つの曲線$C_1,\ C_2$によって囲まれた部分の面積を$S_1$とし,$b \leqq x \leqq c$の範囲で$2$つの曲線$C_1,\ C_2$によって囲まれた部分の面積を$S_2$とするとき,$2$つの面積の比$S_1:S_2$を求めよ.
(4)曲線$C_1$の$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$の部分と$x$軸で囲まれた部分を,$x$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
愛媛大学 国立 愛媛大学 2013年 第4問
原点を$\mathrm{O}$とする座標空間内に$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,次の条件$①,\ ②,\ ③,\ ④$を満たすとする.

$①$ $\mathrm{A}$は$xy$平面上の点で$\mathrm{OA}=1$
$②$ $\mathrm{B}$,$\mathrm{C}$は$yz$平面上の点で,$y$軸に関して対称である
$③$ $\triangle \mathrm{OAB}$は正三角形である
$④$ $\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$は$y$軸上にない


(1)$\mathrm{B}$の$y$座標を$t$とするとき,$t$がとり得る値の範囲を求めよ.
(2)四面体$\mathrm{OABC}$の表面積の最大値を求めよ.
(3)表面積が最大となる四面体$\mathrm{OABC}$を$x$軸,$y$軸,$z$軸の周りに回転してできる立体の体積をそれぞれ$V_x$,$V_y$,$V_z$とするとき,$V_x$,$V_y$,$V_z$を求めよ.
東京大学 国立 東京大学 2013年 第6問
座標空間において,$xy$平面内で不等式$|x| \leqq 1$,$|y| \leqq 1$により定まる正方形$S$の$4$つの頂点を$\mathrm{A}(-1,\ 1,\ 0)$,$\mathrm{B}(1,\ 1,\ 0)$,$\mathrm{C}(1,\ -1,\ 0)$,$\mathrm{D}(-1,\ -1,\ 0)$とする.正方形$S$を,直線$\mathrm{BD}$を軸として回転させてできる立体を$V_1$,直線$\mathrm{AC}$を軸として回転させてできる立体を$V_2$とする.

(1)$0 \leqq t<1$を満たす実数$t$に対し,平面$x=t$による$V_1$の切り口の面積を求めよ.
(2)$V_1$と$V_2$の共通部分の体積を求めよ.
長崎大学 国立 長崎大学 2013年 第6問
次の問いに答えよ.

(1)関数$y=-x+2-\sqrt{1-x^2} (-1 \leqq x \leqq 1)$の増減およびグラフの凹凸を調べよ.また,$y$の最大値およびそのときの$x$の値,$y$の最小値およびそのときの$x$の値をそれぞれ求めよ.
(2)$2$つの曲線$y=-x+2-\sqrt{1-x^2} (-1 \leqq x \leqq 1)$と$y=-x+2+\sqrt{1-x^2} (-1 \leqq x \leqq 1)$によって囲まれた図形$D$を座標平面上に描け.なお,$D$の境界が座標軸との共有点をもつならば,その座標も記入せよ.
(3)上の図形$D$を$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
北海学園大学 私立 北海学園大学 2013年 第3問
曲線$C:y=e^x$上の点$(a,\ e^a)$における接線を$\ell$とする.曲線$C$,接線$\ell$,および$y$軸で囲まれてできる図形を$F$とする.ただし,$a$は定数とし,$a>1$である.

(1)接線$\ell$の方程式を$a$を用いて表せ.
(2)図形$F$の面積$S$を$a$を用いて表せ.
(3)$e^a(1-a) \geqq -1$とするとき,図形$F$を$x$軸のまわりに$1$回転してできる回転体の体積$V$を$a$を用いて表せ.
北海学園大学 私立 北海学園大学 2013年 第4問
曲線$C:y=e^x$上の点$(a,\ e^a)$における接線を$\ell$とする.曲線$C$,接線$\ell$,および$y$軸で囲まれてできる図形を$F$とする.ただし,$a$は定数とし,$a>1$である.

(1)接線$\ell$の方程式を$a$を用いて表せ.
(2)図形$F$の面積$S$を$a$を用いて表せ.
(3)$e^a(1-a) \geqq -1$とするとき,図形$F$を$x$軸のまわりに$1$回転してできる回転体の体積$V$を$a$を用いて表せ.
京都産業大学 私立 京都産業大学 2013年 第3問
$xy$平面上の曲線$C_1:y=x \sin x$と,傾き$m$の直線$C_2:y=mx$について,次の問いに答えよ.

(1)点$(a,\ a \sin a)$における$C_1$の接線の方程式を求めよ.
(2)$C_1$と$C_2$が$0<x<\pi$の範囲で接する$m$の値を求めよ.
(3)$(2)$のとき,$C_1$を$0 \leqq x \leqq \pi$に制限した曲線と$C_2$とで囲まれた部分の面積を求めよ.
(4)$(3)$で得られた部分を,$x$軸のまわりに$1$回転して得られる立体の体積を求めよ.
龍谷大学 私立 龍谷大学 2013年 第3問
関数$f(x)=e^x-x$を考える.

(1)$f(x)$の最小値を求めなさい.
(2)曲線$y=f(x)$と$x$軸,および$2$直線$x=-1$,$x=1$で囲まれた図形を$x$軸の周りに$1$回転してできる回転体の体積を求めなさい.
学習院大学 私立 学習院大学 2013年 第4問
次の問いに答えよ.

(1)$x>0$のとき,$1+2 \sin x<x+e^x$が成り立つことを示せ.
(2)$x \geqq 0$の範囲にあって,$2$つの曲線$y=1+2 \sin x,\ y=x+e^x$と直線$x=\pi$とで囲まれる領域を$x$軸のまわりに$1$回転して得られる立体の体積を求めよ.
スポンサーリンク

「回転体の体積」とは・・・

 まだこのタグの説明は執筆されていません。