タグ「回数」の検索結果

5ページ目:全67問中41問~50問を表示)
お茶の水女子大学 国立 お茶の水女子大学 2012年 第1問
$3$枚のカードに,$1$,$2$,$3$の各数字が書かれている.この$3$枚のカードから$1$枚引き,そこに書いてある数字を記録してカードを戻す,という作業を$n$回繰り返す.ただし,何回目の作業であっても,どのカードを引く確率も等しいとする.一度も引かなかったカードがあった場合に限り,$n$回引いて得た数字のうち一番大きいものを得点として獲得するものとする.\\
例えば$n=5$のとき,引いた数字が順に$2$,$2$,$3$,$3$,$2$であれば$3$点を獲得し,$2$,$1$,$2$,$2$,$3$であれば得点は獲得しない.\\
以下の問いに答えよ.

(1)$1$点を獲得する確率を求めよ.
(2)$2$点を獲得する確率を求めよ.
(3)$3$点を獲得する確率を求めよ.
(4)獲得する得点の期待値が最大になるような作業の回数$n$の値を全て求め,そのときの期待値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第1問
$3$枚のカードに,$1$,$2$,$3$の各数字が書かれている.この$3$枚のカードから$1$枚引き,そこに書いてある数字を記録してカードを戻す,という作業を$n$回繰り返す.ただし,何回目の作業であっても,どのカードを引く確率も等しいとする.一度も引かなかったカードがあった場合に限り,$n$回引いて得た数字のうち一番大きいものを得点として獲得するものとする.\\
例えば$n=5$のとき,引いた数字が順に$2$,$2$,$3$,$3$,$2$であれば$3$点を獲得し,$2$,$1$,$2$,$2$,$3$であれば得点は獲得しない.\\
以下の問いに答えよ.

(1)$1$点を獲得する確率を求めよ.
(2)$2$点を獲得する確率を求めよ.
(3)$3$点を獲得する確率を求めよ.
(4)獲得する得点の期待値が最大になるような作業の回数$n$の値を全て求め,そのときの期待値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第1問
$3$枚のカードに,$1$,$2$,$3$の各数字が書かれている.この$3$枚のカードから$1$枚引き,そこに書いてある数字を記録してカードを戻す,という作業を$n$回繰り返す.ただし,何回目の作業であっても,どのカードを引く確率も等しいとする.一度も引かなかったカードがあった場合に限り,$n$回引いて得た数字のうち一番大きいものを得点として獲得するものとする.\\
例えば$n=5$のとき,引いた数字が順に$2$,$2$,$3$,$3$,$2$であれば$3$点を獲得し,$2$,$1$,$2$,$2$,$3$であれば得点は獲得しない.\\
以下の問いに答えよ.

(1)$1$点を獲得する確率を求めよ.
(2)$2$点を獲得する確率を求めよ.
(3)$3$点を獲得する確率を求めよ.
(4)獲得する得点の期待値が最大になるような作業の回数$n$の値を全て求め,そのときの期待値を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2012年 第4問
箱$\mathrm{A}$には$1$から$9$までの数が書かれた札が$9$枚,箱$\mathrm{B}$には$0$から$9$までの数が書かれた札が$10$枚入っている.今,それぞれの箱から$1$枚ずつ札を取り出して$2$桁の数を作る.ただし,箱$\mathrm{A}$から取り出した札を十の位,箱$\mathrm{B}$から取り出した札を一の位に割り当てるものとし,取り出した札は数を記録した後で元の箱に戻す.今,下図のような数直線を考え,点$\mathrm{Q}$が初期状態で$3$の位置にあるものとする.$2$桁の数が$3$の倍数の場合は数直線上の点$\mathrm{Q}$を負の方向に$1$移動し,それ以外の場合は正の方向に$1$移動するものとして,以下の問いに答えよ.

(1)数直線上の点$\mathrm{Q}$を移動する試行を$3$回行ったとき,点$\mathrm{Q}$が原点$0$上にない確率を求めよ.
(2)数直線上の点$\mathrm{Q}$を移動する試行を$n$回($n \geqq 3$)行ったときの点$\mathrm{Q}$の位置を$x(n)$とする.数直線上を負の方向に移動した回数を$k$として$x(n)$を$n$と$k$で表せ.また,点$\mathrm{Q}$が原点$0$上にあるときの$k$を求めよ.
(3)数直線上の点$\mathrm{Q}$の移動する試行を$n$回($n \geqq 3$)行ったとき,点$\mathrm{Q}$が原点$0$上にある確率を求めよ.
(図は省略)
獨協大学 私立 獨協大学 2012年 第2問
今年から毎年初めに一定の金額$a$円を,複利法により一定の年利率$r$で積み立てるとする.今年から$n$年後の元利合計について次の問題に答えよ.

(1)今年の初めに預金する$a$円は,$1$年後いくらになるか.
(2)今年の初めに預金する$a$円は,$n$年後いくらになるか.
(3)来年の初めに預金する$a$円は,$n$年後いくらになるか.
(4)$n$年後の元利合計はいくらになるか.ただし,預金する回数は全部で$n$回とする.
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)$1$枚の硬貨をくり返し投げるゲームを行う.このゲームを,表がちょうど$4$回出たところ,または,裏がちょうど$4$回出たところで終了することにする.ただし,硬貨を投げたとき,表が出る確率と裏が出る確率はいずれも$\displaystyle \frac{1}{2}$である.

(i) 硬貨を$k$回投げたところで終了する確率を$p_k$とすると,
\[ p_4=\frac{[ア]}{[イ]},\quad p_5=\frac{[ウ]}{[エ]},\quad p_7=\frac{[オ]}{[カ][キ]} \]
である.
(ii) このゲームが終了するまでに硬貨を投げる回数の期待値は
\[ \frac{[ク][ケ]}{[コ][サ]} \]
である.

(2)$0^\circ \leqq \theta \leqq 180^\circ$の$\theta$に対して,$x$に関する$2$次方程式
\[ x^2+(\sqrt{2} \sin 2\theta)x+2 \cos \theta=0 \]
を考える.

(i) この方程式が異なる$2$つの実数解をもつのは,
\[ [ア][イ]^\circ<\theta \leqq [ウ][エ][オ]^\circ \]
のときである.

以下,この方程式が異なる$2$つの実数解をもつ場合について考え,この$2$つの実数解を$\alpha,\ \beta$とする.

(ii) 無限等比級数
\[ 1+\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)+\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)^2+\cdots +\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)^n+\cdots \]
が収束するのは,
\[ [カ][キ][ク]^\circ<\theta \leqq [ケ][コ][サ]^\circ \]
のときである.
(iii) 無限等比級数
\[ 1+\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)+\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)^2+\cdots +\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)^n+\cdots \]
が収束して,その和が$2-\sqrt{2}$となるのは,
\[ \theta=[シ][ス][セ]^\circ \]
のときである.

(3)$\triangle \mathrm{OAB}$において,辺$\mathrm{AB}$を$2:1$の比に内分する点を$\mathrm{C}$($\mathrm{AC}:\mathrm{CB}=2:1$),線分$\mathrm{OC}$を$1:2$の比に内分する点を$\mathrm{D}$($\mathrm{OD}:\mathrm{DC}=1:2$)とする.辺$\mathrm{OA}$上に点$\mathrm{P}$を,辺$\mathrm{OB}$上に点$\mathrm{Q}$を,線分$\mathrm{PQ}$が点$\mathrm{D}$を通るようにとる.

(i) $\displaystyle \frac{\mathrm{OA}}{\mathrm{OP}}+2 \times \frac{\mathrm{OB}}{\mathrm{OQ}}=[ア]$である.


以下,$\mathrm{OA}=2$,$\mathrm{OB}=3$,$\angle \mathrm{AOB}=60^\circ$とする.


(ii) $\mathrm{OP}=1$のとき,$\triangle \mathrm{OPQ}$の面積は
\[ \frac{[イ]}{[ウ][エ]} \times \sqrt{[オ]} \]
である.
(iii) 線分$\mathrm{OP}$の長さと線分$\mathrm{OQ}$の長さの和$\mathrm{OP}+\mathrm{OQ}$がもっとも小さくなるように点$\mathrm{P}$,$\mathrm{Q}$をとるとき,
\[ \mathrm{OP}=\frac{[カ]+[キ] \sqrt{[ク]}}{[ケ]} \]
である.このとき,
\[ \mathrm{OP}+\mathrm{OQ}=\frac{[コ]+[サ] \sqrt{[シ]}}{[ス]} \]
である.
日本女子大学 私立 日本女子大学 2012年 第4問
$\mathrm{A}$,$\mathrm{B}$の$2$人がじゃんけんを繰り返すゲームをする.$\mathrm{A}$,$\mathrm{B}$のどちらかが$2$回多く勝った時点でゲームは終了とする.$1$回のじゃんけんで$\mathrm{A}$が勝つ確率,$\mathrm{B}$が勝つ確率,あいこの確率はいずれも$\displaystyle \frac{1}{3}$である.自然数$n$に対して,じゃんけんを$n$回行った時点でちょうどゲームが終了となる確率を$p_n$とおく.また,じゃんけんを$n$回行った時点で$\mathrm{A}$,$\mathrm{B}$のどちらかが$1$回多く勝っている確率を$q_n$とおき,ともに同じ回数だけ勝っている確率を$r_n$とおく.以下の問いに答えよ.

(1)$p_1,\ q_1$および$r_1$の値を求めよ.
(2)$n \geqq 2$のとき,$p_n$を$q_{n-1}$を用いて表せ.
(3)$n \geqq 2$のとき,$q_n,\ r_n$のそれぞれを$q_{n-1}$と$r_{n-1}$を用いて表せ.
(4)$n \geqq 2$のとき$q_n+kr_n=l(q_{n-1}+kr_{n-1})$を満たす実数$k,\ l$の値を$2$組求めよ.
(5)$(4)$で求めた$k,\ l$の値の$2$組を$k_1,\ l_1$と$k_2,\ l_2$とおく.ただし$k_1<k_2$とする.数列$\{q_n+k_1r_n\}$,数列$\{q_n+k_2r_n\}$,数列$\{q_n\}$,数列$\{r_n\}$の一般項をそれぞれ$l_1,\ l_2$および$n$を用いて表せ.
(6)数列$\{p_n\}$の一般項を$l_1,\ l_2$および$n$を用いて表せ.
東京理科大学 私立 東京理科大学 2012年 第1問
次の文章中の$[ア]$から$[タ]$までに当てはまる$0$から$9$までの数を求めよ.

$1$個のサイコロを$1$回投げ,出た目の回数だけ$1$枚の硬貨を投げることにする.このとき,$xy$平面上において,動点$\mathrm{A}$は原点$(0,\ 0)$から出発し,硬貨を投げるごとに,表が出れば$x$軸方向に$1$移動し,裏が出れば$y$軸方向に$1$移動する.ただし,サイコロを投げたとき,どの目の出る確率も$\displaystyle \frac{1}{6}$で,硬貨を投げたとき,表,裏の出る確率はどちらも$\displaystyle \frac{1}{2}$であるとする.
サイコロの出た目の回数だけ硬貨を投げ終えたときの$\mathrm{A}$の位置を$(x,\ y)$とする.

(1)$(x,\ y)=(0,\ 6)$である確率は$\displaystyle \frac{[ア]}{[イ][ウ][エ]}$である.

(2)$x=y$である確率は$\displaystyle \frac{[オ][カ]}{[キ][ク]}$である.

(3)$y=0$である確率は$\displaystyle \frac{[ケ][コ]}{[サ][シ][ス]}$である.

(4)$x=1$である確率は$\displaystyle \frac{[セ]}{[ソ][タ]}$である.
首都大学東京 公立 首都大学東京 2012年 第1問
$1$個のさいころを$5$回振る試行を行うとき,以下の問いに答えなさい.

(1)$3$の倍数の目がそれ以外の目より$1$回だけ多く出る確率を求めなさい.
(2)$3$の倍数の目がそれ以外の目より$2$回以上多く出る確率を求めなさい.
(3)$3$の倍数の目が出る回数を$x$とし,それ以外の目が出る回数を$y$とする.$x^2+y^2$が最小値をとる確率を求めなさい.
福島県立医科大学 公立 福島県立医科大学 2012年 第4問
自然数を自然数に移す関数$f(n)=\left\{ \begin{array}{cl}
\displaystyle\frac{n}{2} & (n \text{が偶数のとき}) \\
n+1 & (n \text{が奇数のとき})
\end{array} \right.$について,$f$が$m$を$n$に移すことを,$m \longmapsto \hspace{-9mm} {\phantom{\frac{1}{2}}}^f \hspace{3mm} n$と表す.例えば,
\[ 2 \longmapsto \hspace{-10mm} {\phantom{{2^2}^2}}^f \hspace{2.5mm} 1,\qquad 3 \longmapsto \hspace{-10mm} {\phantom{{2^2}^2}}^f \hspace{3mm} 4 \longmapsto \hspace{-10mm} {\phantom{{2^2}^2}}^f \hspace{3mm} 2 \longmapsto \hspace{-10mm} {\phantom{{2^2}^2}}^f \hspace{3mm} 1 \]
である.$2$以上の自然数$n$を$f$で繰り返し移すとき,$1$に移るまでに必要な最小の移動回数を$a_n$とする.したがって,$a_2=1$,$a_3=3$である.$n$を自然数として,以下の問いに答えよ.

(1)$a_{2n+1}$と$a_{2n+2}$をそれぞれ$a_{n+1}$を用いて表せ.
(2)数列$\{a_2,\ a_3,\ a_4,\ \cdots \}$を次のように,第$n$群の項数が$2^{n-1}$になるように分ける.
\[ a_2 \;|\; a_3,\ a_4 \;|\; a_5,\ a_6,\ a_7,\ a_8 \;|\; a_9,\ a_{10},\ a_{11},\ a_{12},\ a_{13},\ a_{14},\ a_{15},\ a_{16} \;|\; \cdots \]

(i) 第$n$群の初項を$n$を用いて表せ.
(ii) 第$n$群の総和を$S_n$とする.$S_{n+1}$を$n$と$S_n$を用いて表せ.また,$S_n$を$n$を用いて表せ.
(iii) $\displaystyle \sum_{k=2}^{2^n} a_k$を$n$を用いて表せ.
スポンサーリンク

「回数」とは・・・

 まだこのタグの説明は執筆されていません。