タグ「四面体」の検索結果

8ページ目:全225問中71問~80問を表示)
上智大学 私立 上智大学 2015年 第2問
$\mathrm{O}$を原点とする座標空間において,$\mathrm{OA}=2$,$\mathrm{OB}=1$,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=-1$を満たす点$\mathrm{A}$と点$\mathrm{B}$を考え,直線$\mathrm{AB}$上に点$\mathrm{P}$をとる.ただし,$\mathrm{AB}>\mathrm{AP}$とする.

(1)$\mathrm{OP} \perp \mathrm{AB}$のとき,$\displaystyle \mathrm{OP}=\frac{\sqrt{[サ]}}{[シ]}$である.
(2)$\triangle \mathrm{OBP}$が二等辺三角形であるとき,
\[ \mathrm{OP}^2=1,\quad \mathrm{AP}=\frac{[ス]}{[セ]} \sqrt{[ソ]}, \]
または
\[ \mathrm{OP}^2=[タ]+\frac{[チ]}{[ツ]} \sqrt{[テ]},\quad \mathrm{AP}=[ト]+\sqrt{[ナ]}, \]
または
\[ \mathrm{OP}^2=\frac{[ニ]}{[ヌ]},\quad \mathrm{AP}=\frac{[ネ]}{[ノ]} \sqrt{[ハ]} \]
である.ただし,
\[ \frac{[ス]}{[セ]} \sqrt{[ソ]}<[ト]+\sqrt{[ナ]}<\frac{[ネ]}{[ノ]} \sqrt{[ハ]} \]
とする.
(3)座標空間に,$\mathrm{OC}=2$,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=1$,$\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=1$を満たす点$\mathrm{C}$をとる.$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$の定める平面を$\alpha$とし,点$\mathrm{C}$から平面$\alpha$に垂線$\mathrm{CQ}$を下ろす.このとき,

$\displaystyle \mathrm{CQ}=\frac{\sqrt{[ヒ]}}{[フ]}$であり,四面体$\mathrm{OABC}$の体積は$\displaystyle \frac{\sqrt{[ヘ]}}{[ホ]}$である.
福岡大学 私立 福岡大学 2015年 第5問
$3$辺$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{OC}$が互いに直交する四面体$\mathrm{OABC}$において,$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$,辺$\mathrm{OB}$を$3:2$に内分する点を$\mathrm{M}$,辺$\mathrm{OC}$を$1:4$に内分する点を$\mathrm{N}$とする.また,$\triangle \mathrm{AMN}$と直線$\mathrm{OG}$との交点を$\mathrm{P}$とする.このとき,$\mathrm{OP}$と$\mathrm{OG}$の比を求めると,$\mathrm{OP}:\mathrm{OG}=[ ]$である.さらに,$\mathrm{AP} \perp \mathrm{MN}$のとき$\mathrm{OB}:\mathrm{OC}=[ ]$である.
同志社大学 私立 同志社大学 2015年 第3問
座標空間内の$xy$平面上に$3$点$\mathrm{A}(-1,\ 5,\ 0)$,$\mathrm{B}(2,\ 2,\ 0)$,$\mathrm{C}(-2,\ 0,\ 0)$がある.また,点$\mathrm{P}(p,\ q,\ r) (r>0)$があり,$\overrightarrow{\mathrm{PA}} \perp \overrightarrow{\mathrm{PB}}$,$\overrightarrow{\mathrm{PB}} \perp \overrightarrow{\mathrm{PC}}$,$\overrightarrow{\mathrm{PC}} \perp \overrightarrow{\mathrm{PA}}$であるとする.次の問いに答えよ.

(1)点$\mathrm{P}$の座標$(p,\ q,\ r)$を求めよ.
(2)四面体$\mathrm{PABC}$の体積を求めよ.
(3)点$\mathrm{P}$から$xy$平面に下ろした垂線の足$\mathrm{H}(p,\ q,\ 0)$に対して,内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{CH}}$,$\overrightarrow{\mathrm{BC}} \cdot \overrightarrow{\mathrm{AH}}$,$\overrightarrow{\mathrm{CA}} \cdot \overrightarrow{\mathrm{BH}}$をそれぞれ求めよ.
名城大学 私立 名城大学 2015年 第2問
空間内の$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(2,\ 1,\ 1)$,$\mathrm{B}(1,\ 2,\ -1)$,$\mathrm{C}(-2,\ 4,\ 3)$を頂点とする四面体$\mathrm{OABC}$について,次の各問に答えよ.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角$\theta$を求めよ.
(2)点$\mathrm{C}$から三角形$\mathrm{OAB}$に垂線を下ろす.この垂線と三角形$\mathrm{OAB}$との交点を$\mathrm{P}$とするとき,$\overrightarrow{\mathrm{CP}}$を求めよ.
(3)点$\mathrm{Q}$を辺$\mathrm{OC}$上にとる.四面体$\mathrm{OABQ}$の体積が$\displaystyle \frac{9}{4}$となるとき,$\overrightarrow{\mathrm{OQ}}$を求めよ.
九州産業大学 私立 九州産業大学 2015年 第4問
空間内に$3$点$\mathrm{A}(-1,\ 1,\ 1)$,$\mathrm{B}(1,\ -1,\ 1)$,$\mathrm{C}(1,\ 1,\ -1)$が与えられている.

(1)$|\overrightarrow{\mathrm{AB}}|$の値は$[ア]$である.
(2)$|\overrightarrow{\mathrm{AX}}|=|\overrightarrow{\mathrm{BX}}|=|\overrightarrow{\mathrm{CX}}|=2$となる点$\mathrm{X}(a,\ b,\ c)$のうち,$a>0$となる点を$\mathrm{D}$とする.$\mathrm{D}$の座標は$[イ]$である.
(3)$\triangle \mathrm{ABC}$の重心$\mathrm{G}$の座標は$[ウ]$である.
(4)$\overrightarrow{\mathrm{DG}} \cdot \overrightarrow{\mathrm{AB}}$の値は$[エ]$である.
(5)四面体$\mathrm{ABCD}$の体積は$[オ]$である.
旭川大学 私立 旭川大学 2015年 第3問
四面体$\mathrm{ABCD}$において,$\mathrm{AB}=2$,$\mathrm{AC}=\mathrm{BC}=\mathrm{AD}=\mathrm{BD}=4$,$\mathrm{CD}=5$であるとする.$\mathrm{E}$を辺$\mathrm{AB}$の中点とし,$\angle \mathrm{CED}=\theta$とおく.

(1)$\cos \theta$の値を求めよ.
(2)四面体$\mathrm{ABCD}$の体積を求めよ.
明治大学 私立 明治大学 2015年 第1問
次の$[ ]$に適する数を入れよ.

(1)製品$\mathrm{A}$は$3$つの部品$\mathrm{a}$,$\mathrm{b}$,$\mathrm{c}$から構成される.部品$\mathrm{a}$,$\mathrm{b}$,$\mathrm{c}$は,製造する過程において各々$\displaystyle \frac{1}{8}$の確率で低品質のものが発生する.製品$\mathrm{A}$に$2$つ以上の低品質の部品が含まれるとき,製品$\mathrm{A}$は不良品となる.製品$\mathrm{A}$を$1$つ製造するとき,それが不良品となる確率は$\displaystyle \frac{[ア][イ]}{[ウ][エ][オ]}$である.

(2)$a$を実数,$k$を正の実数として
\[ F(a)=\int_a^k (x^2-a^2) \, dx \]
とおく.関数$F(a)$の極値の差が$72$となるような$k$の値は$[カ]$である.
(3)四面体$\mathrm{OABC}$は,$\mathrm{OA}=4$,$\mathrm{OB}=5$,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$をみたすとする.$\mathrm{O}$から辺$\mathrm{AB}$に垂線を下ろし,この垂線と$\mathrm{AB}$との交点を$\mathrm{D}$とする.このとき
\[ \overrightarrow{\mathrm{OD}}=\frac{[キ]}{[ク]} \overrightarrow{\mathrm{OA}}+\frac{[ケ]}{[コ]} \overrightarrow{\mathrm{OB}} \]
である.辺$\mathrm{BC}$を$3:2$に内分する点を$\mathrm{E}$,線分$\mathrm{AE}$と線分$\mathrm{CD}$との交点を$\mathrm{F}$とする.このとき
\[ \overrightarrow{\mathrm{OF}}=\frac{[サ]}{[シ]} \overrightarrow{\mathrm{OA}}+\frac{[ス]}{[セ]} \overrightarrow{\mathrm{OB}}+\frac{[ソ]}{[タ][チ]} \overrightarrow{\mathrm{OC}} \]
である.
中京大学 私立 中京大学 2015年 第5問
$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=k$,$\angle \mathrm{AOB}=\angle \mathrm{BOC}={60}^\circ$,$\angle \mathrm{COA}={45}^\circ$の四面体$\mathrm{OABC}$がある.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とし,底面$\mathrm{ABC}$上に点$\mathrm{H}$をとる.このとき,$\overrightarrow{\mathrm{OH}}$は定数$l,\ m,\ n$を用いて$\overrightarrow{\mathrm{OH}}=l \overrightarrow{a}+m \overrightarrow{b}+n \overrightarrow{c} (l+m+n=1)$と表される.$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{OH}}$が垂直であるとき,$l-m-([ア]-\sqrt{[イ]})n=0$であり,$\overrightarrow{\mathrm{OH}}$が底面$\mathrm{ABC}$と垂直であるとき,$\displaystyle l=[ウ]-\frac{\sqrt{[エ]}}{2}$,$m=\sqrt{[オ]}-[カ]$であり,さらに線分$\mathrm{OH}$の長さが$2$であるとき,$k^2=[キ] \sqrt{2}$である.
大阪市立大学 公立 大阪市立大学 2015年 第2問
$\mathrm{O}$を原点とする座標空間において四面体$\mathrm{OABC}$を考える.$\triangle \mathrm{ABC}$の重心を$\mathrm{O}^\prime$,$\triangle \mathrm{OBC}$の重心を$\mathrm{A}^\prime$,$\triangle \mathrm{OCA}$の重心を$\mathrm{B}^\prime$,$\triangle \mathrm{OAB}$の重心を$\mathrm{C}^\prime$とする.次の問いに答えよ.

(1)$2$つのベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{O}^\prime \mathrm{A}^\prime}$は平行であることを示せ.
(2)$|\overrightarrow{\mathrm{OA}}|$と$|\overrightarrow{\mathrm{O}^\prime \mathrm{A}^\prime}|$の比を求めよ.
(3)$\triangle \mathrm{OAB}$と$\triangle \mathrm{O}^\prime \mathrm{A}^\prime \mathrm{B}^\prime$は相似であることを示せ.
(4)$\mathrm{A}$が$\mathrm{P}(1,\ 0,\ 0)$と$\mathrm{Q}(0,\ 2,\ 0)$を結ぶ線分の中点,$\mathrm{B}$が$\mathrm{Q}$と$\mathrm{R}(0,\ 0,\ 3)$を結ぶ線分の中点,$\mathrm{C}$が$\mathrm{R}$と$\mathrm{P}$を結ぶ線分の中点であるとき,四面体$\mathrm{OABC}$の体積$V$と四面体$\mathrm{O}^\prime \mathrm{A}^\prime \mathrm{B}^\prime \mathrm{C}^\prime$の体積$V^\prime$を求めよ.
岐阜薬科大学 公立 岐阜薬科大学 2015年 第4問
\begin{mawarikomi}{50mm}{
(図は省略)
}
$2$つずつ平行な$3$組の平面で囲まれた立体を平行六面体という.平行六面体$\mathrm{ABCD}$-$\mathrm{EFGH}$があり,
\[ l \overrightarrow{\mathrm{PB}}+m \overrightarrow{\mathrm{PD}}+n \overrightarrow{\mathrm{PE}}=\overrightarrow{\mathrm{GP}} \]
を満たす点$\mathrm{P}$が存在している.ただし,$l+m+n+1 \neq 0$とする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}$を,$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AD}}$,$\overrightarrow{\mathrm{AE}}$を用いて表せ.
(2)点$\mathrm{P}$が線分$\mathrm{AG}$上にあるとき,$l,\ m,\ n$が満たす条件を求めよ.
(3)点$\mathrm{Q}$が$\triangle \mathrm{BDE}$を含む平面上にある.$\overrightarrow{\mathrm{AQ}}=x \overrightarrow{\mathrm{AB}}+y \overrightarrow{\mathrm{AD}}+z \overrightarrow{\mathrm{AE}}$とするとき,$x,\ y,\ z$が満たす条件を求めよ.
(4)四面体$\mathrm{ABDE}$の体積と四面体$\mathrm{PBDE}$の体積が$2:1$になるとき,$l,\ m,\ n$が満たす条件を求めよ.また,点$\mathrm{P}$がこの条件を満たし,かつ,線分$\mathrm{AG}$上にあるとき,$l,\ m,\ n$の値を求めよ.

\end{mawarikomi}
スポンサーリンク

「四面体」とは・・・

 まだこのタグの説明は執筆されていません。