タグ「四面体」の検索結果

22ページ目:全225問中211問~220問を表示)
信州大学 国立 信州大学 2010年 第5問
次の問いに答えよ.

(1)四面体OABCにおいて,OA$\perp$BCかつOB$\perp$CAならば,OC$\perp$ABとなることを証明せよ.
(2)不定積分$\displaystyle \int x^3 e^{x^2} \, dx$を求めよ.
(3)極限値$\displaystyle \lim_{n \to \infty} \sum_{k=1}^n \frac{n}{4n^2-k^2}$を求めよ.
東京大学 国立 東京大学 2010年 第6問
四面体$\mathrm{OABC}$において,$4$つの面はすべて合同であり,$\mathrm{OA}=3$,$\mathrm{OB}=\sqrt{7}$,$\mathrm{AB}=2$であるとする.また,$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を含む平面を$L$とする.

(1)点$\mathrm{C}$から平面$L$におろした垂線の足を$\mathrm{H}$とおく.$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(2)$0<t<1$をみたす実数$t$に対して,線分$\mathrm{OA}$,$\mathrm{OB}$各々を$t:1-t$に内分する点をそれぞれ$\mathrm{P}_t$,$\mathrm{Q}_t$とおく.$2$点$\mathrm{P}_t$,$\mathrm{Q}_t$を通り,平面$L$に垂直な平面を$M$とするとき,平面$M$による四面体$\mathrm{OABC}$の切り口の面積$S(t)$を求めよ.
(3)$t$が$0<t<1$の範囲を動くとき,$S(t)$の最大値を求めよ.
岐阜大学 国立 岐阜大学 2010年 第3問
空間内の四面体OABCについて,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.辺OA上の点Dは$\text{OD}:\text{DA}=1:2$を満たし,辺OB上の点Eは$\text{OE}:\text{EB}=1:1$を満たし,辺BC上の点Fは$\text{BF}:\text{FC}=2:1$を満たすとする.3点D,E,Fを通る平面を$\alpha$とする.以下の問に答えよ.

(1)$\alpha$と辺ACが交わる点をGとする.$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて$\overrightarrow{\mathrm{OG}}$を表せ.
(2)$\alpha$と直線OCが交わる点をHとする.$\text{OC}:\text{CH}$を求めよ.
(3)四面体OABCを$\alpha$で2つの立体に分割する.この2つの立体の体積比を求めよ.
岐阜大学 国立 岐阜大学 2010年 第3問
空間内の四面体OABCについて,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.辺OA上の点Dは$\text{OD}:\text{DA}=1:2$を満たし,辺OB上の点Eは$\text{OE}:\text{EB}=1:1$を満たし,辺BC上の点Fは$\text{BF}:\text{FC}=2:1$を満たすとする.3点D,E,Fを通る平面を$\alpha$とする.以下の問に答えよ.

(1)$\alpha$と辺ACが交わる点をGとする.$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて$\overrightarrow{\mathrm{OG}}$を表せ.
(2)$\alpha$と直線OCが交わる点をHとする.$\text{OC}:\text{CH}$を求めよ.
(3)四面体OABCを$\alpha$で2つの立体に分割する.この2つの立体の体積比を求めよ.
三重大学 国立 三重大学 2010年 第2問
四面体OABCは,$\text{OA}=\sqrt{5},\ \text{OB}=\text{OC}=5,\ \text{AB}=\text{AC}=\sqrt{30},\ \text{BC}=5\sqrt{2}$を満たすものとする.辺OBを$2:1$に外分する点をD,辺OCを$3:2$に外分する点をEとする.Oから直線DEに引いた垂線と直線BCとの交点をFとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$として,次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{b} \cdot \overrightarrow{c},\ \overrightarrow{c} \cdot \overrightarrow{a}$を求めよ.
(2)$\overrightarrow{\mathrm{OF}}$と$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)線分OFの長さと線分AFの長さおよび$\cos \angle \text{OFA}$の値を求めよ.
福井大学 国立 福井大学 2010年 第1問
空間内に4点O,A,B,Cがあり,$\text{OA}=\text{OB}=\sqrt{5},\ \text{OC}=1$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくと,$\overrightarrow{a} \cdot \overrightarrow{b}=4,\ \overrightarrow{b} \cdot \overrightarrow{c}=1$が成り立っている.2点A,Cから直線OBにそれぞれ垂線を下ろし,直線OBとの交点をD,Eとする.このとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{DA}},\ \overrightarrow{\mathrm{EC}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{c}$のとりうる値の範囲を求めよ.
(3)4点O,A,B,Cが同一平面上にない場合,四面体OABCの体積が最大になるときの$\overrightarrow{a} \cdot \overrightarrow{c}$の値と体積の最大値を求めよ.
新潟大学 国立 新潟大学 2010年 第1問
四面体OABCにおいて,$\text{OA}=\text{OB}=\text{OC}=3$,$\text{AB}=\text{BC}=\text{CA}=\sqrt{6}$である.また,点Pは辺ABを$x:1-x$に内分し,点Qは辺OCを$y:1-y$に内分する($0<x<1$,$0<y<1$).$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$として,次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(2)$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ x,\ y$で表せ.
(3)2点P,Qの間の距離PQの最小値と,そのときの$x,\ y$の値を求めよ.
東京農工大学 国立 東京農工大学 2010年 第1問
Oを原点とする座標空間にある,中心C$(1,\ 1,\ \sqrt{10})$,半径$3\sqrt{3}$の球面を$S$とする.次の問いに答えよ.

(1)$S$と$x$軸の正の部分との交点をPとし,$S$と$y$軸の正の部分との交点をQとする.P,Qの座標を求めよ.
(2)2点O,Cを通る直線と$S$との交点のうち,$z$座標が正であるものをRとする.Rの座標を求めよ.
(3)四面体OPQRの体積$V$を求めよ.
(4)4点O,P,Q,Rを通る球面の半径$r_1$を求めよ.
(5)四面体OPQRに内接する球面の半径を$r_2$とする.このとき,$\displaystyle \frac{r_1}{r_2}$の値を求めよ.
滋賀医科大学 国立 滋賀医科大学 2010年 第2問
四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OA}} \perp \overrightarrow{\mathrm{BC}},\ \overrightarrow{\mathrm{OB}} \perp \overrightarrow{\mathrm{BC}}$とする.

(1)三角形$\mathrm{OAB},\ \mathrm{OAC},\ \mathrm{OBC},\ \mathrm{ABC}$はすべて直角三角形であることを示せ.
(2)$\mathrm{OC}$の中点$\mathrm{M}$から平面$\mathrm{ABC}$に下ろした垂線の足を$\mathrm{N}$とする.
\[ \overrightarrow{\mathrm{CN}}=s \overrightarrow{\mathrm{CA}}+t \overrightarrow{\mathrm{CB}} \]
と表すときの$s,\ t$を,長さ$\mathrm{OA},\ \mathrm{OB}$で表せ.
早稲田大学 私立 早稲田大学 2010年 第1問
$[ア]$~$[オ]$にあてはまる数または式を記入せよ.

(1)整数$a,\ b$が$2a+3b=42$を満たすとき,$ab$の最大値は$[ア]$である.
(2)三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{BC}=1$,$\mathrm{CA}=\sqrt{2}$とし,$\angle \mathrm{A}=\alpha$,$\angle \mathrm{B}=\beta$とする.正の整数$m,\ n$が$m\alpha + n\beta = \pi$を満たすとき,$m=[イ]$,$n=[ウ]$である.
(3)数列$\{a_n\}$は次の$3$つの条件を満たしている.

(i) $\{a_n\}$は等差数列で,その公差は$0$ではない.
(ii) $a_1=1$
(iii) 数列$a_3,\ a_6,\ a_{10}$は等比数列になっている.

このとき数列$\{a_n\}$の第$2010$項までの和$\displaystyle \sum_{n=1}^{2010}a_n$の値は$[エ]$である.
(4)四面体$\mathrm{ABCD}$は$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}=1$を満たす.このような四面体の体積のとり得る最大値は$[オ]$である.
スポンサーリンク

「四面体」とは・・・

 まだこのタグの説明は執筆されていません。