タグ「四面体」の検索結果

21ページ目:全225問中201問~210問を表示)
青山学院大学 私立 青山学院大学 2011年 第2問
四面体$\mathrm{OABC}$を考える.また$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおく.次の問に答えよ.

(1)線分$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{D}$とする.このとき$\overrightarrow{\mathrm{OD}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表すと
\[ \overrightarrow{\mathrm{OD}}=\frac{[ ]}{[ ]} \overrightarrow{a}+\frac{[ ]}{[ ]} \overrightarrow{b} \]
である.
(2)線分$\mathrm{BC}$を$1:3$に内分する点を$\mathrm{E}$とし,直線$\mathrm{CD}$と$\mathrm{AE}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表すと
\[ \overrightarrow{\mathrm{OP}}=\frac{1}{[ ]} ([ ] \overrightarrow{a}+[ ] \overrightarrow{b}+[ ] \overrightarrow{c}) \]
である.
(3)四面体$\mathrm{OAPC}$の体積は,四面体$\mathrm{OABC}$の体積の$\displaystyle \frac{[ ]}{[ ]}$倍である.
大阪市立大学 公立 大阪市立大学 2011年 第2問
座標空間を運動する$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の時刻$t$における座標をそれぞれ$(t,\ 0,\ t)$,$(\sqrt{2}t,\ 1-2t,\ \sqrt{2}(1-t))$,$(-t,\ -\sqrt{2}t,\ t)$とする.原点を$\mathrm{O}$と記すとき,次の問いに答えよ.ただし,$\displaystyle 0<t<\frac{1}{2}$とする.

(1)$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{\mathrm{OC}},\ \overrightarrow{\mathrm{OB}} \perp \overrightarrow{\mathrm{OC}}$を示せ.
(2)$\triangle \mathrm{ABC}$の面積$S(t)$は$t(1-2t)$であることを示せ.
(3)四面体$\mathrm{OABC}$の体積$V(t)$の$\displaystyle 0<t<\frac{1}{2}$における最大値を求めよ.
大阪府立大学 公立 大阪府立大学 2011年 第2問
四面体OABCと,Oと異なる点Gが与えられているとき,以下の問いに答えよ.

(1)等式$\text{AG}^2=\text{OG}^2-2\overrightarrow{\mathrm{OG}} \cdot \overrightarrow{\mathrm{OA}}+\text{OA}^2$を示せ.ただし,$\overrightarrow{\mathrm{OG}} \cdot \overrightarrow{\mathrm{OA}}$は$\overrightarrow{\mathrm{OG}}$と$\overrightarrow{\mathrm{OA}}$の内積を表す.
(2)$\overrightarrow{\mathrm{OG}}$が
\[ \overrightarrow{\mathrm{OG}}=a\overrightarrow{\mathrm{OA}}+b\overrightarrow{\mathrm{OB}}+c\overrightarrow{\mathrm{OC}} \]
と表されているとき,
\[ a\text{AG}^2+b\text{BG}^2+c\text{CG}^2=a\text{OA}^2+b\text{OB}^2+c\text{OC}^2 \]
が成り立つための実数$a,\ b,\ c$についての条件を求めよ.
兵庫県立大学 公立 兵庫県立大学 2011年 第4問
座標空間内に$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(2,\ 0,\ 1)$,$\mathrm{B}(0,\ 2,\ 1)$,$\mathrm{C}(3,\ 3,\ -3)$がある.$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る平面$\alpha$上の点$\mathrm{P}$に対して,ベクトル$\overrightarrow{\mathrm{OP}}$は適当な$2$つの実数$s,\ t$を用いて,$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$と表すことができる.以下の問に答えなさい.

(1)平面$\alpha$上にない点$\mathrm{Q}(a,\ b,\ c)$に対して,線分$\mathrm{QH}$が平面$\alpha$と垂直になるような$\alpha$上の点$\mathrm{H}$の座標を$a,\ b,\ c$を用いて表しなさい.
(2)四面体$\mathrm{OABD}$の体積が四面体$\mathrm{OABC}$の体積と等しくなるように$z$軸上の点$\mathrm{D}$の座標を求めなさい.
富山県立大学 公立 富山県立大学 2011年 第2問
四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$と辺$\mathrm{BC}$を$t:(1-t)$に内分する点を,それぞれ$\mathrm{D}$と$\mathrm{F}$とする.また,辺$\mathrm{AB}$と辺$\mathrm{CO}$を$\displaystyle \frac{t}{3}:\left( 1-\frac{t}{3} \right)$に内分する点を,それぞれ$\mathrm{E}$と$\mathrm{G}$とする.ただし,$0<t<1$である.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$としたとき,次の問いに答えよ.

(1)$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ t$を用いて,$\overrightarrow{\mathrm{OD}}$,$\overrightarrow{\mathrm{OE}}$,$\overrightarrow{\mathrm{OF}}$,$\overrightarrow{\mathrm{OG}}$を表せ.
(2)$\displaystyle t=\frac{3}{4}$のとき,$4$点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$が同一平面上に存在することを示せ.
(3)$(2)$のとき,線分$\mathrm{DF}$と線分$\mathrm{EG}$の交点を$\mathrm{H}$とする.$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて$\overrightarrow{\mathrm{OH}}$を表せ.
京都大学 国立 京都大学 2010年 第2問
四面体$\mathrm{ABCD}$において$\overrightarrow{\mathrm{CA}}$と$\overrightarrow{\mathrm{CB}}$,$\overrightarrow{\mathrm{DA}}$と$\overrightarrow{\mathrm{DB}}$,$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{CD}}$はそれぞれ垂直であるとする.このとき,頂点$\mathrm{A}$,頂点$\mathrm{B}$および辺$\mathrm{CD}$の中点$\mathrm{M}$の$3$点を通る平面は辺$\mathrm{CD}$と直交することを示せ.
京都大学 国立 京都大学 2010年 第1問
四面体ABCDにおいて$\overrightarrow{\mathrm{CA}}$と$\overrightarrow{\mathrm{CB}}$,$\overrightarrow{\mathrm{DA}}$と$\overrightarrow{\mathrm{DB}}$,$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{CD}}$はそれぞれ垂直であるとする.このとき,頂点A,頂点Bおよび辺CDの中点Mの3点を通る平面は辺CDと直交することを示せ.
名古屋大学 国立 名古屋大学 2010年 第1問
座標空間に8点
\begin{eqnarray}
& & \text{O}(0,\ 0,\ 0),\ \text{P}(1,\ 0,\ 0),\ \text{Q}(1,\ 1,\ 0),\ \text{R}(0,\ 1,\ 0), \nonumber \\
& & \text{A}(0,\ 0,\ 1),\ \text{B}(1,\ 0,\ 1),\ \text{C}(1,\ 1,\ 1),\ \text{D}(0,\ 1,\ 1) \nonumber
\end{eqnarray}
をとり,線分BCの中点をMとする.線分RD上の点をN$(0,\ 1,\ t)$とし,3点 O,M,Nを通る平面と線分PDおよび線分PBとの交点をそれぞれK,Lとする.

(1)Kの座標を$t$で表せ.
(2)四面体OKLPの体積を$V(t)$とする.Nが線分RD上をRからDまで動くとき,$V(t)$の最大値と最小値およびそれらを与える$t$の値をそれぞれ求めよ.
東北大学 国立 東北大学 2010年 第4問
四面体ABCDにおいて,辺AB の中点をM,辺CDの中点をNとする.以下の問いに答えよ.

(1)等式
\[ \overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}} = \overrightarrow{\mathrm{PC}}+ \overrightarrow{\mathrm{PD}} \]
を満たす点Pは存在するか.証明をつけて答えよ.
(2)点Qが等式
\[ |\overrightarrow{\mathrm{QA}}+\overrightarrow{\mathrm{QB}}| = |\overrightarrow{\mathrm{QC}}+\overrightarrow{\mathrm{QD}}| \]
を満たしながら動くとき,点Qが描く図形を求めよ.
(3)点Rが等式
\[ |\overrightarrow{\mathrm{RA}}|^2 + |\overrightarrow{\mathrm{RB}}|^2 = |\overrightarrow{\mathrm{RC}}|^2 + |\overrightarrow{\mathrm{RD}}|^2 \]
を満たしながら動くとき,内積$\overrightarrow{\mathrm{MN}} \cdot \overrightarrow{\mathrm{MR}}$はRのとり方によらず一定であることを示せ.
(4)(2)の点Qが描く図形と(3)の点Rが描く図形が一致するための必要十分条件は$|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{CD}}|$であることを示せ.
東北大学 国立 東北大学 2010年 第4問
四面体ABCDにおいて,辺AB の中点をM,辺CDの中点をNとする.以下の問いに答えよ.

(1)等式
\[ \overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}} = \overrightarrow{\mathrm{PC}}+ \overrightarrow{\mathrm{PD}} \]
を満たす点Pは存在するか.証明をつけて答えよ.
(2)点Qが等式
\[ |\overrightarrow{\mathrm{QA}}+\overrightarrow{\mathrm{QB}}| = |\overrightarrow{\mathrm{QC}}+\overrightarrow{\mathrm{QD}}| \]
を満たしながら動くとき,点Qが描く図形を求めよ.
(3)点Rが等式
\[ |\overrightarrow{\mathrm{RA}}|^2 + |\overrightarrow{\mathrm{RB}}|^2 = |\overrightarrow{\mathrm{RC}}|^2 + |\overrightarrow{\mathrm{RD}}|^2 \]
を満たしながら動くとき,内積$\overrightarrow{\mathrm{MN}} \cdot \overrightarrow{\mathrm{MR}}$はRのとり方によらず一定であることを示せ.
(4)(2)の点Qが描く図形と(3)の点Rが描く図形が一致するための必要十分条件は$|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{CD}}|$であることを示せ.
スポンサーリンク

「四面体」とは・・・

 まだこのタグの説明は執筆されていません。