タグ「四面体」の検索結果

15ページ目:全225問中141問~150問を表示)
東京海洋大学 国立 東京海洋大学 2013年 第5問
座標空間における$5$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(3,\ 0,\ 0)$,$\mathrm{B}(1,\ \sqrt{2},\ 1)$,$\displaystyle \mathrm{C} \left( \frac{\sqrt{3}}{2},\ \frac{\sqrt{6}}{6},\ \frac{\sqrt{3}}{6} \right)$,$\mathrm{R}(0,\ -1,\ \sqrt{2})$について次の問に答えよ.

(1)$\angle \mathrm{AOC}$,$\angle \mathrm{BOC}$,$\angle \mathrm{AOR}$,$\angle \mathrm{BOR}$を求めよ.
(2)$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$は同一平面上にあることを示せ.
(3)$2$点$\mathrm{P}$,$\mathrm{Q}$は正の実数$s,\ t$について$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OQ}}=t \overrightarrow{\mathrm{OB}}$をみたすものとする.$3$点$\mathrm{P}$,$\mathrm{C}$,$\mathrm{Q}$が$1$直線上にあるとき,四面体$\mathrm{OPQR}$の体積の最小値とそのときの$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
島根大学 国立 島根大学 2013年 第4問
空間における$3$点$\mathrm{A}(1,\ 1,\ -1)$,$\mathrm{B}(3,\ 2,\ 1)$,$\mathrm{C}(-1,\ 3,\ 0)$を通る平面を$\alpha$とするとき,次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$は直角二等辺三角形であることを示せ.
(2)原点$\mathrm{O}$から平面$\alpha$に垂線を下ろし,その交点を$\mathrm{H}$とするとき,点$\mathrm{H}$の座標を求めよ.
(3)四面体$\mathrm{OABC}$に外接する球の中心の座標を求めよ.
南山大学 私立 南山大学 2013年 第2問
原点を$\mathrm{O}$とする座標空間に$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 3)$がある.

(1)$\triangle \mathrm{ABC}$の面積を求めよ.
(2)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面を$\alpha$とする.$\mathrm{O}$から$\alpha$に下ろした垂線と$\alpha$との交点を$\mathrm{H}$とするとき,
\[ \overrightarrow{\mathrm{AH}}=s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}} \]
を満たすような実数$s,\ t$の値を求めよ.また,$\mathrm{H}$の座標を求めよ.
(3)四面体$\mathrm{OABC}$に内接する球の半径$r$を求めよ.
名城大学 私立 名城大学 2013年 第2問
空間の$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 3)$を通る平面を$\alpha$とし,原点$\mathrm{O}$から平面$\alpha$に垂線$\mathrm{OH}$を下ろす.

(1)四面体$\mathrm{OABC}$の体積を求めよ.
(2)$\overrightarrow{\mathrm{AH}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて表し,点$\mathrm{H}$の座標を求めよ.
(3)$\triangle \mathrm{ABC}$の面積を求めよ.
東京電機大学 私立 東京電機大学 2013年 第2問
$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\sqrt{5}$,$\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=2$である四面体$\mathrm{OABC}$を考える.$\mathrm{AB}$の中点を$\mathrm{M}$とし,$\mathrm{M}$から$\mathrm{OC}$に下ろした垂線と$\mathrm{OC}$の交点を$\mathrm{N}$とする.$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,$\mathrm{OG}$と$\mathrm{MN}$の交点を$\mathrm{P}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$として,次の問に答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{c}$と$\overrightarrow{b} \cdot \overrightarrow{c}$の値を求めよ.
(2)$\overrightarrow{\mathrm{ON}}$を$\overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(4)四面体$\mathrm{PABG}$の体積は四面体$\mathrm{OABC}$の体積の何倍かを求めよ.
東京電機大学 私立 東京電機大学 2013年 第5問
$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\sqrt{5}$,$\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=2$である四面体$\mathrm{OABC}$を考える.$\mathrm{AB}$の中点を$\mathrm{M}$とし,$\mathrm{M}$から$\mathrm{OC}$に下ろした垂線と$\mathrm{OC}$の交点を$\mathrm{N}$とする.$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,$\mathrm{OG}$と$\mathrm{MN}$の交点を$\mathrm{P}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$として,次の問に答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{c}$と$\overrightarrow{b} \cdot \overrightarrow{c}$の値を求めよ.
(2)$\overrightarrow{\mathrm{ON}}$を$\overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(4)四面体$\mathrm{PABG}$の体積は四面体$\mathrm{OABC}$の体積の何倍かを求めよ.
東京女子大学 私立 東京女子大学 2013年 第5問
座標空間における点$\mathrm{A}(2,\ -1,\ 2)$,$\mathrm{B}(-1,\ 1,\ -1)$に対し,以下の設問に答えよ.ただし$\mathrm{O}$は原点を表す.

(1)$\cos \angle \mathrm{AOB}$を求めよ.
(2)$x \geqq 0$の範囲にある点$\mathrm{C}(x,\ y,\ z)$で,$\overrightarrow{\mathrm{OC}}$が$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$の両方と直交し,かつ$|\overrightarrow{\mathrm{CA}}|=5$となるものを求めよ.
(3)四面体$\mathrm{OABC}$の体積を求めよ.
滋賀県立大学 公立 滋賀県立大学 2013年 第3問
四面体の$4$つの頂点を$\mathrm{A}_1$,$\mathrm{A}_2$,$\mathrm{A}_3$,$\mathrm{A}_4$とし,空間のある点$\mathrm{P}$に関するそれぞれの位置ベクトルを$\overrightarrow{a_1}$,$\overrightarrow{a_2}$,$\overrightarrow{a_3}$,$\overrightarrow{a_4}$とする.いま$\triangle \mathrm{A}_2 \mathrm{A}_3 \mathrm{A}_4$,$\triangle \mathrm{A}_1 \mathrm{A}_3 \mathrm{A}_4$,$\triangle \mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_4$,$\triangle \mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_3$を順に$\mathrm{T}_1$,$\mathrm{T}_2$,$\mathrm{T}_3$,$\mathrm{T}_4$で表しその重心をそれぞれ$\mathrm{G}_1$,$\mathrm{G}_2$,$\mathrm{G}_3$,$\mathrm{G}_4$とする.

(1)点$\mathrm{H}$を$\displaystyle \overrightarrow{\mathrm{PH}}=\frac{\overrightarrow{a_1}+\overrightarrow{a_2}+\overrightarrow{a_3}+\overrightarrow{a_4}}{4}$を満たす点とすると,$4$つの直線$\mathrm{A}_i \mathrm{G}_i (i=1,\ 2,\ 3,\ 4)$は$\mathrm{H}$で交わることを示せ.
(2)「直線$\mathrm{A}_i \mathrm{H}$は$\mathrm{T}_i$を含む平面に直交する($i=1,\ 2,\ 3,\ 4$)」という条件が成り立つと仮定する.このとき$\mathrm{P}$として$\mathrm{H}$を選べば,$\overrightarrow{a_j}$と$\overrightarrow{a_k}$の内積$\overrightarrow{a_j} \cdot \overrightarrow{a_k} (j,\ k=1,\ 2,\ 3,\ 4)$の値は$j \neq k$を満たすどの$j,\ k$に対しても同じであることを示せ.
(3)(2)の条件が成り立てば,四面体$\mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_3 \mathrm{A}_4$は正四面体であることを示せ.
福島県立医科大学 公立 福島県立医科大学 2013年 第2問
一辺の長さが$8$である正四面体$\mathrm{OABC}$の辺$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{OC}$上に点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$があって,$\mathrm{AD}=\mathrm{OE}=\mathrm{OF}=5$を満たしている.$\triangle \mathrm{DEF}$の重心$\mathrm{G}$を通り$\triangle \mathrm{DEF}$を含む平面に垂直な直線が,$\triangle \mathrm{ABC}$を含む平面と交わる点を$\mathrm{H}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$として,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(3)四面体$\mathrm{DEFH}$の体積を求めよ.
京都大学 国立 京都大学 2012年 第2問
正四面体$\mathrm{OABC}$において,点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$をそれぞれ辺$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{OC}$上にとる.ただし$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$は四面体$\mathrm{OABC}$の頂点とは異なるとする.$\triangle \mathrm{PQR}$が正三角形ならば,$3$辺$\mathrm{PQ}$,$\mathrm{QR}$,$\mathrm{RP}$はそれぞれ$3$辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$に平行であることを証明せよ.
スポンサーリンク

「四面体」とは・・・

 まだこのタグの説明は執筆されていません。