タグ「四角錐」の検索結果

2ページ目:全24問中11問~20問を表示)
九州大学 国立 九州大学 2013年 第2問
一辺の長さが1の正方形$\mathrm{OABC}$を底面とし,点$\mathrm{P}$を頂点とする四角錐$\mathrm{POABC}$がある.ただし,点$\mathrm{P}$は内積に関する条件$\displaystyle \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OP}}=\frac{1}{4}$,および$\displaystyle \overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OP}}=\frac{1}{2}$をみたす.辺$\mathrm{AP}$を$2:1$に内分する点を$\mathrm{M}$とし,辺$\mathrm{CP}$の中点を$\mathrm{N}$とする.さらに,点$\mathrm{P}$と直線$\mathrm{BC}$上の点$\mathrm{Q}$を通る直線$\mathrm{PQ}$は,平面$\mathrm{OMN}$に垂直であるとする.このとき,長さの比$\mathrm{BQ}:\mathrm{QC}$,および線分$\mathrm{OP}$の長さを求めよ.
九州大学 国立 九州大学 2013年 第1問
一辺の長さが1の正方形$\mathrm{OABC}$を底面とし,$\mathrm{OP}=\mathrm{AP}=\mathrm{BP}=\mathrm{CP}$をみたす点$\mathrm{P}$を頂点とする四角錐$\mathrm{POABC}$がある.辺$\mathrm{AP}$を$1:3$に内分する点を$\mathrm{D}$,辺$\mathrm{CP}$の中点を$\mathrm{E}$,辺$\mathrm{BC}$を$t:(1-t)$に内分する点を$\mathrm{Q}$とする.このとき,以下の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OD}}$と$\overrightarrow{\mathrm{OE}}$を,$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OC}},\ \overrightarrow{\mathrm{OP}}$を用いて表せ.
(2)ベクトル$\overrightarrow{\mathrm{PQ}}$を,$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OC}},\ \overrightarrow{\mathrm{OP}}$と$t$を用いて表せ.
(3)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OP}}$の値を求めよ.
(4)直線$\mathrm{PQ}$が平面$\mathrm{ODE}$に垂直であるとき,$t$の値および線分$\mathrm{OP}$の長さを求めよ.
大阪教育大学 国立 大阪教育大学 2013年 第3問
平行四辺形$\mathrm{ABCD}$を底面とする四角錐$\mathrm{OABCD}$を考える.線分$\mathrm{OB}$の中点を$\mathrm{B}^\prime$,線分$\mathrm{OC}$を$1:2$に内分する点を$\mathrm{C}^\prime$とし,$\mathrm{A}$,$\mathrm{B}^\prime$,$\mathrm{C}^\prime$を通る平面と直線$\mathrm{OD}$の交点を$\mathrm{D}^\prime$とする.また,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とする.

(1)$\overrightarrow{\mathrm{OD}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$で表せ.
(2)$\overrightarrow{\mathrm{OD^\prime}}$は$\overrightarrow{\mathrm{OD}}$の何倍か.
(3)三角錐$\mathrm{AOB}^\prime \mathrm{D}^\prime$の体積は,三角錐$\mathrm{AOBD}$の体積の何倍か.
(4)四角錐$\mathrm{OAB}^\prime \mathrm{C}^\prime \mathrm{D}^\prime$の体積は,四角錐$\mathrm{OABCD}$の体積の何倍か.
大同大学 私立 大同大学 2013年 第2問
次の$[ ]$にあてはまる$0$から$9$までの数字を記入せよ.ただし,根号内の平方因数は根号外にくくり出し,分数は既約分数で表すこと.

(1)$\displaystyle \frac{(\alpha+\beta)^3-(\alpha^3+\beta^3)}{\alpha+\beta}=[ ] \alpha\beta$である.$a=\sqrt[3]{48}+\sqrt[3]{36}$のとき$\displaystyle \frac{a^3-84}{a}=[][]$であり,$b=\sqrt[3]{10+\sqrt{19}}+\sqrt[3]{10-\sqrt{19}}$のとき$\displaystyle \log_{81} \frac{b^3-20}{b}=\frac{[ ]}{[][]}$である.
(2)$\mathrm{AB}=1$,$\mathrm{BC}=2$,$\mathrm{CD}=1$,$\mathrm{DA}=1$の台形$\mathrm{ABCD}$において$\displaystyle \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AD}}=-\frac{[ ]}{[ ]}$であり,対角線$\mathrm{AC}$と$\mathrm{BD}$の交点を$\mathrm{E}$とすると,$\displaystyle \overrightarrow{\mathrm{AE}}=\frac{[ ]}{[ ]} \overrightarrow{\mathrm{AB}}+\frac{[ ]}{[ ]} \overrightarrow{\mathrm{AD}}$である.さらに,台形$\mathrm{ABCD}$を底面にもつ四角錐$\mathrm{ABCDF}$の頂点$\mathrm{F}$から底面$\mathrm{ABCD}$に下ろした垂線の足が$\mathrm{E}$と一致し$\mathrm{EF}=2$であるとき,$\displaystyle \overrightarrow{\mathrm{FA}} \cdot \overrightarrow{\mathrm{FD}}=\frac{[][]}{[ ]}$である.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
$\mathrm{ABCDE}$を$1$辺の長さが$1$の正方形$\mathrm{ABCD}$を底面とし,$4$個の正三角形を側面とする正四角錐とする.
(図は省略)

(1)$\triangle \mathrm{CDE}$の重心を$\mathrm{G}$とする.ベクトル$\overrightarrow{\mathrm{AG}}$を$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AD}},\ \overrightarrow{\mathrm{AE}}$で表すと,$\overrightarrow{\mathrm{AG}} = [セ]$となる.
(2)$\overrightarrow{\mathrm{0}}$でないベクトル$\overrightarrow{p}$が平面$\alpha$上の任意のベクトルと垂直なとき,$\overrightarrow{p}$は平面$\alpha$と垂直であるという.$\overrightarrow{p} = a\, \overrightarrow{\mathrm{AB}} + b\, \overrightarrow{\mathrm{AD}} + c\, \overrightarrow{\mathrm{AE}}\ (a,\ b,\ c\text{は実数})$が$\triangle \mathrm{CDE}$を含む平面と垂直なとき,$a:b:c=[ソ]$である.よって,$|\overrightarrow{p}|=1$かつ$\overrightarrow{p} \cdot \overrightarrow{\mathrm{AD}} > 0$となるように$a,\ b,\ c$を定めると,$\overrightarrow{p} = [タ]$となる.
(3)正四角錐$\mathrm{ABCDE}$の$\triangle \mathrm{CDE}$に,各辺の長さが$1$の正四面体$\mathrm{CDEF}$を貼り付ける.ベクトル$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AD}},\ \overrightarrow{\mathrm{AE}}$で表すと,$\overrightarrow{\mathrm{AF}}=[チ]$となる.また,$\mathrm{H}$を辺$\mathrm{EC}$の中点とすると,$\overrightarrow{\mathrm{HA}} \cdot \overrightarrow{\mathrm{HF}}= [ツ]$であり,$\triangle \mathrm{AHF}$の面積は[テ]である.
上智大学 私立 上智大学 2012年 第2問
$1$辺の長さが$\sqrt{2}$の正方形$\mathrm{ABCD}$を底面とし,
\[ \mathrm{PA} = \mathrm{PB} = \mathrm{PC} = \mathrm{PD} = \sqrt{5} \]
である四角錐$\mathrm{PABCD}$を考える.
(図は省略)

(1)四角錐$\mathrm{PABCD}$のすべての面に接する球の中心を$\mathrm{O}$とし,$\mathrm{P}$から底面$\mathrm{ABCD}$に垂線$\mathrm{PH}$を下ろすとき
\[ \mathrm{PH}=[テ],\quad \mathrm{OH}=\frac{[ト]}{[ナ]} \]
である.
(2)辺$\mathrm{PB}$の中点を$\mathrm{Q}$,辺$\mathrm{PD}$の中点を$\mathrm{R}$とする.$3$点$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{C}$を含む平面と辺$\mathrm{PA}$との交点を$\mathrm{S}$とする.このとき
\[ \mathrm{SP}=\frac{[ニ]}{[ヌ]} \sqrt{[ネ]} \]
である.$\mathrm{S}$から線分$\mathrm{AC}$に垂線$\mathrm{ST}$を下ろすとき
\[ \mathrm{ST}=\frac{[ノ]}{[ハ]},\quad \mathrm{CT}=\frac{[ヒ]}{[フ]} \]
である.さらに,四角形$\mathrm{CRSQ}$の面積は
\[ \frac{[ヘ]}{[ホ]} \sqrt{[マ]} \]
である.
安田女子大学 私立 安田女子大学 2012年 第3問
$1$辺の長さが$1$の正方形の紙を用意し,頂点を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.次の図のように,正方形の各辺を底辺とする高さ$x$の$4$つの二等辺三角形$\triangle \mathrm{ABE}$,$\triangle \mathrm{BCF}$,$\triangle \mathrm{CDG}$,$\triangle \mathrm{DAH}$を正方形から切り取り,残りを図の$4$本の線分$\mathrm{EF}$,$\mathrm{FG}$,$\mathrm{GH}$,$\mathrm{HE}$にそって折り曲げて,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$が$1$点になるように辺を合わせて四角錐を作るとする.ただし,$\displaystyle 0<x<\frac{1}{2}$とする.このとき,次の問いに答えよ.
(図は省略)

(1)この四角錐の底面となる正方形$\mathrm{EFGH}$の面積を求めよ.
(2)この四角錐の表面積となる図の斜線部分の面積を求めよ.
(3)$(2)$で求めた四角錐の表面積が$\displaystyle \frac{1}{2}$のとき,この四角錐の体積を求めよ.
千葉大学 国立 千葉大学 2011年 第3問
四角錐$\mathrm{OABCD}$において,底面$\mathrm{ABCD}$は$1$辺の長さ$2$の正方形で,
\[ \mathrm{OA} = \mathrm{OB} = \mathrm{OC} = \mathrm{OD} = \sqrt{5} \]
である.

(1)四角錐$\mathrm{OABCD}$の高さを求めよ.
(2)四角錐$\mathrm{OABCD}$に内接する球$S$の半径を求めよ.
(3)内接する球$S$の表面積と体積を求めよ.
福島大学 国立 福島大学 2011年 第2問
以下の問いに答えなさい.

(1)点Oを頂点とし,1辺の長さ1の正方形ABCDを底面とする四角錐O-ABCDが,$\text{OA}=\text{OB}=\text{OC}=\text{OD}=1$を満たしているとする.辺OAを$2:1$に内分する点をP,辺OCを$t:1-t$に内分する点をQとする.線分BPと線分BQのなす角が$\displaystyle \frac{\pi}{3}$になるときの$t$の値を求めなさい.
(2)点Pが放物線$y=x^2$上を動くき,定点A$(1,\ a)$と点Pとを結ぶ線分APを$1:2$に内分する点Qの軌跡の方程式を$a$を用いて書きなさい.
(3)$\displaystyle \frac{d}{dx} \int_0^{\sin 3x} e^{2t} \, dt$を求めなさい.
中央大学 私立 中央大学 2011年 第3問
一辺の長さが$a$の正方形を底面とし,高さ$h$の正四角錐がある.下の図のように,この正四角錐に,底面が正方形の正四角柱を内接させる.このとき,以下の問いに答えよ.

(1)内接する正四角柱の底面の一辺の長さを$x$とするとき,この正四角柱の体積を求めよ.
(2)内接する正四角柱の体積が最大になるときの$x$の値を求めよ.また,そのときの正四角柱の体積を求めよ.
(図は省略)
スポンサーリンク

「四角錐」とは・・・

 まだこのタグの説明は執筆されていません。