タグ「周り」の検索結果

9ページ目:全89問中81問~90問を表示)
長崎大学 国立 長崎大学 2010年 第4問
$a$を$a>1$を満たす定数とする.原点Oと点P$(1,\ 0)$を線分で結び,点Pと点Q$(a,\ \log a)$を曲線$y=\log x$で結ぶ.このようにして得られる曲線OPQを,$y$軸の周りに1回転させてできる立体の容器を考える.ただし,OPを含む部分を底面として,水平に置くものとする.次の問いに答えよ.

(1)この容器の容積$V$を$a$を用いて表せ.
(2)$m$を正の定数とする.この容器に,単位時間あたり$m$の水を一定の割合で注ぎ入れる.ただし,最初は水が全く入っていない状態とする.注ぎ始めてから時間$\displaystyle t \ \left( 0<t<\frac{V}{m} \right)$が経過したとき,底面から水面までの高さを$h$,水面の上昇する速度を$v$とする.$h$および$v$を$m,\ t$を用いて表せ.
宇都宮大学 国立 宇都宮大学 2010年 第6問
座標平面上に,点$(0,\ 1)$を中心とする半径$1$の円と点$\mathrm{P}(0,\ h) \ (0<h<2)$がある.点$\mathrm{P}$を通る直線$y=h$と円との交点で第$1$象限にあるものを$\mathrm{Q}$とする.曲線$C:y=\alpha x^2$は点$\mathrm{Q}$を通るとし,$y$軸と曲線$C$および線分$\mathrm{PQ}$で囲まれた部分を図形$\mathrm{A}$とする.次の問いに答えよ.

(1)$\alpha$を$h$を用いて表せ.
(2)図形$\mathrm{A}$の面積$S$を$h$の式で表し,$S$の最大値を求めよ.
(3)図形$\mathrm{A}$を$y$軸の周りに$1$回転してできる立体の体積$V$を$h$の式で表し,$V$の最大値を求めよ.
(4)$S,\ V$は,それぞれ(2),(3)で求めたものとする.$\displaystyle X=\frac{V}{2\pi S}$とおくとき,$X$の最大値を求めよ.
九州工業大学 国立 九州工業大学 2010年 第2問
実数$\displaystyle \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$に対して行列$A$を
\[ A=\left( \begin{array}{rr}
\cos 2\theta & \sin 2\theta \\
-\sin 2\theta & \cos 2\theta
\end{array} \right) \]
とする.また,実数$k \ (k>0)$に対して,$x,\ y$は
\[ \left( \begin{array}{c}
x \\
y
\end{array} \right)=A \left( \begin{array}{c}
x \\
y
\end{array} \right)+\left( \begin{array}{c}
0 \\
k
\end{array} \right) \]
を満たす.そして,$x,\ y,\ k$を用いて座標平面上の2点$\mathrm{P}(x,\ y)$,$\mathrm{Q}(0,\ k)$を定める.原点を$\mathrm{O}$とする.以下の問いに答えよ.

(1)点$\mathrm{P}$の座標を$k,\ \tan \theta$を用いて表せ.
(2)$\angle \mathrm{OPQ}$を$\theta$を用いて表せ.
(3)$\triangle \mathrm{OPQ}$を$x$軸の周りに1回転させてできる立体の体積$V(\theta)$を求めよ.
(4)(3)で求めた$V(\theta)$について,$\displaystyle \lim_{\theta \to +0}\frac{\theta}{2\pi}V(\theta)$を求めよ.
早稲田大学 私立 早稲田大学 2010年 第4問
$xyz$空間において,2点P$(1,\ 0,\ 1)$,Q$(-1,\ 1,\ 0)$を考える.線分PQを$x$軸の周りに1回転して得られる曲面を$S$とする.以下の問に答えよ.

(1)曲面$S$と,2つの平面$x=1$および$x=-1$で囲まれる立体の体積を求めよ.
(2)(1)の立体の平面$y=0$による切り口を,平面$y=0$上において図示せよ.
(3)定積分$\displaystyle \int_0^1 \sqrt{t^2+1}\, dt$の値を$\displaystyle t=\frac{e^s-e^{-s}}{2}$と置換することによって求めよ.
これを用いて,(2)の切り口の面積を求めよ.
東北学院大学 私立 東北学院大学 2010年 第4問
$2$つの曲線$y=e \log x$,$y=ax^2$が共有点を持ち,その共有点における接線が一致するとき以下の問いに答えよ.ただし$e$は自然対数の底とする.

(1)定数$a$の値を求めよ.
(2)この$2$つの曲線と$x$軸で囲まれた図形の面積$S$を求めよ.
(3)$(2)$の図形を$y$軸の周りに$1$回転してできる回転体の体積$V$を求めよ.
愛知県立大学 公立 愛知県立大学 2010年 第4問
原点をOとする座標平面上に2点P$(a,\ c)$およびQ$(b,\ d)$をとり,$\triangle$OPQを考える.線分OPが$x$軸の正の部分となす角を$\theta$とする.ただし,$\theta$は時計の針の回転と逆の向きを正とする.このとき,以下の問いに答えよ.

(1)$\sin \theta$と$\cos \theta$を$a,\ c$の式で表せ.
(2)点Qを原点の周りに$-\theta$だけ回転させた点を$(x,\ y)$とするとき,$x,\ y$を$a,\ b,\ c,\ d$で表せ.
(3)$\triangle$OPQの面積を$a,\ b,\ c,\ d$で表せ.
(4)一次変換
\[ A=\biggl( \begin{array}{cc}
\sqrt{2}+\sqrt{5} & 3 \\
1 & \sqrt{2}-\sqrt{5}
\end{array} \biggr) \]
によって,点P,Qがそれぞれ点P$^\prime$,Q$^\prime$に移されるものとする.$\triangle$OP$^\prime$Q$^\prime$の面積は$\triangle$OPQの何倍か.
熊本県立大学 公立 熊本県立大学 2010年 第3問
$0 \leqq r \leqq l$のとき,円$(x-m)^2+(y-l)^2=r^2$によって囲まれる部分を$x$軸の周りに$1$回転してできる立体の体積を求めなさい.
熊本県立大学 公立 熊本県立大学 2010年 第3問
$0 \leqq r \leqq l$のとき,円$(x-m)^2+(y-l)^2=r^2$によって囲まれる部分を$x$軸の周りに$1$回転してできる立体の体積を求めなさい.
滋賀県立大学 公立 滋賀県立大学 2010年 第4問
$a$は定数で,$1<a<e$とする.曲線$C_1:y=x+\log x$上に点$\mathrm{P}(a,\ a+\log a)$,曲線$C_2:y=-\log x$上に点$\mathrm{Q}(a,\ -\log a)$がある.ただし,$e$は自然対数の底である.

(1)$\mathrm{P}$における$C_1$の接線を$\ell_1$,$\mathrm{Q}$における$C_2$の接線を$\ell_2$とする.このとき,$3$直線$x=0,\ \ell_1,\ \ell_2$で囲まれた部分の面積$S$を$a$を用いて表せ.
(2)$C_1$と$3$直線$y=0,\ x=1,\ x=a$で囲まれた部分を$R_1$,$C_2$と2直線$y=0,\ x=a$で囲まれた部分を$R_2$とする.また,$R_1,\ R_2$を$x$軸の周りに$1$回転させてできる立体をそれぞれ$B_1,\ B_2$とする.このとき,$B_1$から$B_2$を除いた部分の体積$V$を求めよ.
スポンサーリンク

「周り」とは・・・

 まだこのタグの説明は執筆されていません。