タグ「周り」の検索結果

8ページ目:全89問中71問~80問を表示)
鳥取大学 国立 鳥取大学 2011年 第3問
曲線$C:y=\log x \ (x>0)$について,次の問いに答えよ.ただし,$\log x$は$x$の自然対数である.

(1)不定積分$\displaystyle \int \log x \, dx$を求めよ.
(2)原点から曲線$C$に引いた接線$\ell$の方程式および接点の座標を求めよ.
(3)曲線$C$と(2)で求めた接線$\ell$および$x$軸とで囲まれた部分の面積を求めよ.
(4)曲線$C$と(2)で求めた接線$\ell$および$x$軸とで囲まれた部分を$x$軸の周りに1回転してできる立体の体積を求めよ.
鳥取大学 国立 鳥取大学 2011年 第3問
曲線$C:y=\log x \ (x>0)$について,次の問いに答えよ.ただし,$\log x$は$x$の自然対数である.

(1)不定積分$\displaystyle \int \log x \, dx$を求めよ.
(2)原点から曲線$C$に引いた接線$\ell$の方程式および接点の座標を求めよ.
(3)曲線$C$と(2)で求めた接線$\ell$および$x$軸とで囲まれた部分の面積を求めよ.
(4)曲線$C$と(2)で求めた接線$\ell$および$x$軸とで囲まれた部分を$x$軸の周りに1回転してできる立体の体積を求めよ.
山形大学 国立 山形大学 2011年 第2問
媒介変数$t$を用いて$x=t^2,\ y=t^3$と表される曲線を$C$とする.ただし,$t$は実数全体を動くとする.また,実数$a \ (a \neq 0)$に対して,点$(a^2,\ a^3)$における$C$の接線を$\ell_a$とする.このとき,次の問に答えよ.

(1)$\ell_a$の方程式を求めよ.
(2)曲線$C$の$0 \leqq t \leqq 1$に対応する部分の長さを求めよ.ただし,曲線$x=f(t),\ y=g(t)$の$\alpha \leqq t \leqq \beta$に対応する部分の長さは$\displaystyle \int_{\alpha}^{\beta}\sqrt{\left( \frac{dx}{dt} \right)^2+\left( \frac{dy}{dt} \right)^2} \, dt$であたえられる.
(3)曲線$C$と直線$\ell_1$で囲まれた図形の面積を求めよ.
(4)曲線$C$と直線$\ell_1$で囲まれた図形を$y$軸の周りに1回転してできる回転体の体積を求めよ.
山形大学 国立 山形大学 2011年 第4問
媒介変数$t$を用いて$x=t^2,\ y=t^3$と表される曲線を$C$とする.ただし,$t$は実数全体を動くとする.また,実数$a \ (a \neq 0)$に対して,点$(a^2,\ a^3)$における$C$の接線を$\ell_a$とする.このとき,次の問に答えよ.

(1)$\ell_a$の方程式を求めよ.
(2)曲線$C$の$0 \leqq t \leqq 1$に対応する部分の長さを求めよ.ただし,曲線$x=f(t),\ y=g(t)$の$\alpha \leqq t \leqq \beta$に対応する部分の長さは$\displaystyle \int_{\alpha}^{\beta}\sqrt{\left( \frac{dx}{dt} \right)^2+\left( \frac{dy}{dt} \right)^2} \, dt$であたえられる.
(3)曲線$C$と直線$\ell_1$で囲まれた図形の面積を求めよ.
(4)曲線$C$と直線$\ell_1$で囲まれた図形を$y$軸の周りに$1$回転してできる回転体の体積を求めよ.
滋賀医科大学 国立 滋賀医科大学 2011年 第4問
円卓の周りに並べられた$n$席の座席に$m$人の人が座るとき,どの二人も隣り合わない確率を$P(n,\ m)$とする.ただし$\displaystyle 2 \leqq m \leqq \frac{n}{2}$とし,どの空席も同じ確率で選ぶものとする.

(1)$P(n,\ 2)$を$n$を用いて表せ.
(2)$P(n,\ m)$を$n,\ m$を用いて表せ.
(3)$\displaystyle \lim_{m \to \infty}P(m^2,\ m)$を求めよ.
明治大学 私立 明治大学 2011年 第1問
次の各設問の$[1]$から$[8]$までの空欄と$[ ]$に適当な答えを入れよ.

(1)箱の中に,$1$と書かれたカードが$4$枚.$2$と書かれたカードが$3$枚,$3$と書かれたカードが$2$枚,$4$と書かれたカードが$1$枚ある.箱から同時に$3$枚のカードを取り出すとき,以下の問いに答えよ.

(i) $1$と書かれたカードが少なくとも$1$枚含まれる確率は$[1]$である.
(ii) $3$枚のカードに書かれた数字の和が$5$となる確率は$[2]$である.

(2)$\triangle \mathrm{ABC}$において次が成り立つとき,以下の問いに答えよ.
\[ \sin A:\sin B:\sin C = 13:8:7 \]

(i) $\cos A=[3]$である.
(ii) $\triangle \mathrm{ABC}$の外接円の直径が$13$であるとき,$\triangle \mathrm{ABC}$の面積は$[ ]$である.ただし,分母を有理化して答えよ.

(3)$\triangle \mathrm{OAB}$に対して$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t\overrightarrow{\mathrm{OB}}$とする.実数$s,\ t$が次の条件を満たすとき.点$\mathrm{P}$が動く部分の面積を求めよ.ただし,$\triangle \mathrm{OAB}$の面積を$1$とする.

(i) $\displaystyle \frac{1}{2} \leqq s+t \leqq 1,\ 0 \leqq s,\ 0 \leqq t$のとき$[4]$.
(ii) $t \leqq s,\ s \leqq 3,\ 0 \leqq t$のとき$[5]$.

(4)$\displaystyle 81^{-x}-\frac{1}{2}\cdot 3^{-2x+2}+2=0$を満たす最大の$x$は$\log_9 [6]$である.
(5)ある星$\mathrm{O}$を中心として同一方向に円軌道を描きながら回っている星$\mathrm{A}$と星$\mathrm{B}$がある.ただし,星$\mathrm{A}$と星$\mathrm{B}$の円軌道は同一平面上にあると仮定する.星$\mathrm{A}$と星$\mathrm{O}$との距離は$0.9$億$\mathrm{km}$で,星$\mathrm{B}$と星$\mathrm{O}$との距離は$1.5$億$\mathrm{km}$である.星$\mathrm{A}$は星$\mathrm{O}$の周りを一周するのに$240$日かかり,星$\mathrm{B}$は$360$日かかる.現在,星$\mathrm{A}$が星$\mathrm{B}$より回転方向に$90^{\circ}$進んだ位置にあるとするとき,星$\mathrm{A}$と星$\mathrm{B}$との距離が最初に最大になるのは,今から$[7]$日後である.また,$60$日後の星$\mathrm{A}$と星$\mathrm{B}$との距離は$[8]$億$\mathrm{km}$である.
北海学園大学 私立 北海学園大学 2011年 第4問
点$\mathrm{P}$を直線$\ell_1:y=x$上の点とし,$2$点$\mathrm{A}$,$\mathrm{B}$の座標をそれぞれ$(-1,\ 0)$,$(0,\ 1)$とする.$\mathrm{P}$を通り$\ell_1$に直交する直線を$\ell_2$とする.また,$\ell_2$と$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線との交点を$\mathrm{Q}$とする.$\mathrm{P}$の$x$座標を$a$とするとき,次の問いに答えよ.ただし,$\displaystyle 0<a<\frac{1}{2}$とする.

(1)$\ell_2$の方程式を$a$を用いて表せ.
(2)$\mathrm{Q}$の座標を$a$を用いて表せ.
(3)$\mathrm{Q}$から$x$軸に下ろした垂線と$x$軸との交点を$\mathrm{R}$とする.四角形$\mathrm{OPQR}$を$x$軸の周りに$1$回転してできる回転体の体積$V$を$a$を用いて表せ.
大阪市立大学 公立 大阪市立大学 2011年 第1問
$a$は実数で$0 < a < 1$とする.座標平面上の第$1$象限にある曲線$\displaystyle y =\frac{1}{x}$と$2$直線$y = x,\ y = ax$で囲まれる部分$P(a)$の面積を$S(a)$とする.次の問いに答えよ.

(1)$S(a)$を$a$を用いて表せ.
(2)$\displaystyle 2S(\frac{1}{e}) \leqq S(a) \leqq 2S(\frac{1}{e})+1$となる$a$の範囲を求めよ.
(3)$P(a)$を$x$軸の周りに回転して得られる回転体の体積$V(a)$と$\displaystyle \lim_{a \to 0} V(a)$を求めよ.
福井大学 国立 福井大学 2010年 第4問
曲線$C:y=e^x$上の点P$(t,\ e^t)$における接線を$\ell$とし,$\ell$と$x$軸との交点をQとする.さらに,Qを通り$\ell$に直交する直線と$C$との交点をRとする.以下の問いに答えよ.

(1)点Qの$x$座標を$t$を用いて表せ.
(2)$\triangle$PQRの外心が$y$軸上にあるときの$t$の値を求めよ.
(3)$t$を(2)で求めた値とするとき,直線PQ,QRと$C$とで囲まれる部分を$x$軸の周りに1回転して得られる回転体の体積を求めよ.
山口大学 国立 山口大学 2010年 第3問
$A,\ A^\prime$をそれぞれ座標平面上の点$(\alpha \cos \theta,\ \alpha \sin \theta)$,$(-\alpha \cos \theta,\ -\alpha \sin \theta)$とし,$f$を行列
\[ \biggl( \begin{array}{cc}
r \cos \theta & -r \sin \theta \\
r \sin \theta & r \cos \theta
\end{array} \biggr) \]
の表す1次変換とする.$\displaystyle \alpha= \left( \frac{45}{4} \right)^{\frac{1}{6}},\ r=\left( \frac{10}{3} \right)^{\frac{1}{6}},\ \theta=\frac{\pi}{6}$とするとき,次の問いに答えなさい.

(1)2点A,A$^{\prime}$の逆変換$f^{-1}$による像を焦点とし,焦点からの距離の差が2に等しい双曲線$C_1$の方程式を求めなさい.
(2)2点A,A$^\prime$の合成関数$f \circ f$による像を焦点とし,直線$x+2y=0$を漸近線にもつ双曲線$C_2$の方程式を求めなさい.
(3)双曲線$C_1$と$C_2$により囲まれた部分を$x$軸の周りに1回転させてできる立体の体積を求めなさい.
スポンサーリンク

「周り」とは・・・

 まだこのタグの説明は執筆されていません。