タグ「周り」の検索結果

7ページ目:全89問中61問~70問を表示)
愛媛大学 国立 愛媛大学 2013年 第4問
原点を$\mathrm{O}$とする座標空間内に$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,次の条件$①,\ ②,\ ③,\ ④$を満たすとする.

$①$ $\mathrm{A}$は$xy$平面上の点で$\mathrm{OA}=1$
$②$ $\mathrm{B}$,$\mathrm{C}$は$yz$平面上の点で,$y$軸に関して対称である
$③$ $\triangle \mathrm{OAB}$は正三角形である
$④$ $\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$は$y$軸上にない


(1)$\mathrm{B}$の$y$座標を$t$とするとき,$t$がとり得る値の範囲を求めよ.
(2)四面体$\mathrm{OABC}$の表面積の最大値を求めよ.
(3)表面積が最大となる四面体$\mathrm{OABC}$を$x$軸,$y$軸,$z$軸の周りに回転してできる立体の体積をそれぞれ$V_x$,$V_y$,$V_z$とするとき,$V_x$,$V_y$,$V_z$を求めよ.
龍谷大学 私立 龍谷大学 2013年 第3問
関数$f(x)=e^x-x$を考える.

(1)$f(x)$の最小値を求めなさい.
(2)曲線$y=f(x)$と$x$軸,および$2$直線$x=-1$,$x=1$で囲まれた図形を$x$軸の周りに$1$回転してできる回転体の体積を求めなさい.
中京大学 私立 中京大学 2013年 第2問
媒介変数表示$\left\{ \begin{array}{l}
x=\theta-\sin \theta \\
y=\cos \theta
\end{array} \right. (0<\theta<2\pi)$で表される曲線$C$について,次の各問に答えよ.

(1)曲線$C$の導関数$\displaystyle \frac{dy}{dx}$を$\theta$の関数で表せ.
(2)曲線$C$と$x$軸で囲まれる部分を$x$軸の周りに$1$回転させてできる回転体の体積を求めよ.
富山県立大学 公立 富山県立大学 2013年 第3問
$x \geqq 0$とする.関数$f(x)=e^{-2x^3}$,$g(x)=xe^{-x^3}$について,次の問いに答えよ.ただし,$\displaystyle \lim_{x \to \infty}g(x)=0$は証明なしに用いてよい.

(1)導関数$f^\prime(x)$を求めよ.
(2)$y=g(x)$の増減,極値および変曲点を調べて,そのグラフの概形をかけ.
(3)$a \geqq 0$とし,曲線$y=g(x)$と$x$軸および$2$直線$x=a$,$x=a+1$で囲まれた部分を,$x$軸の周りに$1$回転させてできる立体の体積を$V(a)$とする.このとき,極限値$\displaystyle \lim_{a \to \infty}e^{2a^3}V(a)$を求めよ.
東京農工大学 国立 東京農工大学 2012年 第3問
区間$1 \leqq x \leqq 4$で定められた関数$\displaystyle f(x)=\sqrt{4x-x^2},\ g(x)=\sqrt{x \log \frac{4}{x}}$について,次の問いに答えよ.ただし対数は自然対数とする.

(1)曲線$y=f(x)$と$x$軸および直線$x=1$で囲まれた部分を,$x$軸の周りに1回転させてできる回転体の体積$V$を求めよ.
(2)区間$1 \leqq x \leqq 4$において$\{f(x)\}^2-\{g(x)\}^2 \geqq 0$が成り立つことを示せ.
(3)2つの曲線$y=f(x),\ y=g(x)$と直線$x=1$で囲まれた部分を$D$とおく.$D$を$x$軸の周りに1回転させてできる回転体の体積$W$を求めよ.
福井大学 国立 福井大学 2012年 第4問
曲線$C:y=e^{-x}$上の点$\mathrm{A}(a,\ e^{-a})$における法線を$\ell$とし,$\ell$に関して点$(a,\ 0)$と対称な点を$\mathrm{B}$,直線$\mathrm{AB}$と$y$軸との交点を$\mathrm{P}$とする.点$\mathrm{P}$の$y$座標を$f(a)$とおくとき,以下の問いに答えよ.

(1)$f(a)$を$a$を用いて表せ.
(2)$a$が実数全体を動くとき,$f(a)$の最大値とそのときの$a$の値を求めよ.
(3)$a$を(2)で求めた値とするとき,曲線$C$,$y$軸と線分$\mathrm{AP}$で囲まれた部分を,$y$軸の周りに1回転させてできる立体の体積を求めよ.
福井大学 国立 福井大学 2012年 第3問
曲線$C:y=e^{-x}$上の点$\mathrm{A}(a,\ e^{-a})$における$C$の法線$m$と直線$\ell_1:x=a$に関して,以下の問いに答えよ.

(1)$\ell_1$と$m$のなす角を$\theta$とするとき,$\tan \theta$を$a$を用いて表せ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(2)$m$に関して$\ell_1$と対称な直線を$\ell_2$とするとき,$\ell_2$の方程式を$a$を用いて表せ.
(3)$\ell_2$と$y$軸の交点を$\mathrm{P}$とおく.$a$が実数全体を動くとき,$\mathrm{P}$の$y$座標の最大値とそのときの$a$の値を求めよ.
(4)$a$を(3)で求めた値とするとき,曲線$C$,$y$軸および線分$\mathrm{AP}$で囲まれた部分を,$y$軸の周りに1回転させてできる立体の体積を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2012年 第1問
座標平面上の点を,原点のまわりに角$\theta$だけ回転移動させる一次変換を表す$2$行$2$列の行列を$A$とする.以下の問いに答えよ.

(1)座標平面上の点$\mathrm{P}_0(a,\ b)$が$A$によって変換された点を点$\mathrm{P}_1$とする.$2$点$\mathrm{P}_0$,$\mathrm{P}_1$の間の長さを求めよ.
(2)$A^n=E$となる条件を示せ.ただし,$n$は$2$以上の整数,$0 \leqq \theta \leqq \pi$,$E$は単位行列とする.
(3)座標平面上の点$\mathrm{P}_0(a,\ b)$が$A$によって$l$回変換された点を点$\mathrm{P}_l$とする.点$\mathrm{P}_0$が$A$によって$n$回変換されると,原点の周りを$1$周して元の点$\mathrm{P}_0$に戻るとする.$n$個の点$\mathrm{P}_0$,$\mathrm{P}_1$,$\cdots$,$\mathrm{P}_{n-1}$で囲まれた$n$角形の面積$S_n$を求めよ.また,$\displaystyle \lim_{x \to 0}\frac{\sin x}{x}=1$を用いて,$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
(4)座標平面上の点を,原点からの方向を変えずに距離を$k$倍する一次変換を表す$2$行$2$列の行列を$B$とする.座標平面上の点$\mathrm{Q}_{i-1}$が一次変換$AB$によって点$\mathrm{Q}_i$に移るとする.点$\mathrm{Q}_0$を$(c_0,\ d_0)$とするとき,$2$点$\mathrm{Q}_{i-1}$,$\mathrm{Q}_i$の間の長さ$m_i$を$k,\ \theta,\ c_0,\ d_0$を用いて表せ.
東京理科大学 私立 東京理科大学 2012年 第3問
$a$を$a>2$であるような実数とする.座標平面上で,曲線$\displaystyle y=\frac{1}{x}$を$C_1$とし,点$(a,\ a)$を中心とし点$(1,\ 1)$を通る円を$C_2$とする.曲線$C_1$と円$C_2$の点$(1,\ 1)$以外の共有点のうち,$x$座標が$1$より小さいものを$\mathrm{B}$とする.点$\mathrm{B}$から直線$y=x$に下ろした垂線と直線$y=x$の交点を$\mathrm{H}$とする.

(1)円$C_2$の方程式を求めよ.
(2)点$\mathrm{H}$の座標を求めよ.また,点$\mathrm{H}$と点$(1,\ 1)$の距離を求めよ.
(3)$t$を正の実数とする.直線$y=x$上にあり点$(1,\ 1)$からの距離が$t$である点のうち,$x$座標が$1$より大きいものを$\mathrm{P}$とする.点$\mathrm{P}$を通り直線$y=x$に垂直な直線と曲線$C_1$の交点のうち,$x$座標が$1$より小さいものを$\mathrm{Q}$とする.このとき,線分$\mathrm{PQ}$の長さを$t$を用いて表せ.
(4)直線$y=x$と線分$\mathrm{BH}$,および曲線$C_1$で囲まれた部分を,直線$y=x$の周りに$1$回転させてできる立体の体積を求めよ.
信州大学 国立 信州大学 2011年 第5問
次の問いに答えよ.

(1)次の不定積分を求めよ.
\[ \int \log (1+\sqrt{x}) \, dx \]
(2)点$(1,\ 1)$を中心とする半径$1$の円と,$x$軸および$y$軸で囲まれた図形を,$x$軸の周りに$1$回転してできる立体の体積を求めよ.ただし,回転させる図形は円の中心を含まないものとする.
スポンサーリンク

「周り」とは・・・

 まだこのタグの説明は執筆されていません。