タグ「周り」の検索結果

6ページ目:全89問中51問~60問を表示)
福島県立医科大学 公立 福島県立医科大学 2014年 第3問
$a$を定数とする.関数$\displaystyle f(x)=\frac{1-a \cos x}{1+\sin x} (0 \leqq x \leqq \pi)$について,以下の問いに答えよ.

(1)$\displaystyle t=\frac{-\cos x}{1+\sin x} (0<x<\pi)$とおくとき,$\displaystyle \frac{dx}{dt}$を$t$で表せ.
(2)$f(x)$が$0<x<\pi$の範囲で極値をもつように$a$の値の範囲を定めよ.また,その極値を$a$で表せ.
(3)$a$が$(2)$で定めた範囲にあるとき,$2$点$(0,\ f(0))$,$(\pi,\ f(\pi))$を通る直線と$y=f(x)$のグラフで囲まれる図形を$x$軸の周りに回転してできる回転体の体積を$a$で表せ.
名古屋市立大学 公立 名古屋市立大学 2014年 第1問
$xy$平面上に動点$\mathrm{P}(t,\ 2t)$,$\mathrm{Q}(t-1,\ 1-t)$がある.ただし,$0 \leqq t \leqq 1$とする.次の問いに答えよ.

(1)実数$k$に対して直線$x=k$と直線$\mathrm{PQ}$との交点を求めよ.
(2)閉区間$[-1,\ 1]$内の定数$a$に対し,直線$x=a$と線分$\mathrm{PQ}$との交点の$y$座標のとり得る範囲を$a$で表せ.
(3)$t$が$0$から$1$まで動くとき,線分$\mathrm{PQ}$が動く領域$S$の面積を求めよ.
(4)$S$を$x$軸の周りに$1$回転させた回転体の体積を求めよ.
京都府立大学 公立 京都府立大学 2014年 第3問
区間$-1 \leqq x \leqq 1$で定義された連続関数$f(x)$を
\[ 12xf(x)+12 \int_0^x f(t) \, dt=15x^3 |x|-16x^3,\quad f(0)=0 \]
によって定める.曲線$C:y=f(x)$を考える.以下の問いに答えよ.

(1)$f(x)$を求めよ.
(2)$f(x)$は$x=0$で微分可能であることを示せ.
(3)曲線$C$と直線$\ell:y=a$との区間$-1 \leqq x \leqq 1$における共有点の個数を,$a$の値によって分類せよ.
(4)曲線$C$と$3$直線$y=-1$,$x=-1$,$x=1$で囲まれる部分を,$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
埼玉大学 国立 埼玉大学 2013年 第4問
$xyz$空間における平面$y=0$上のグラフ$z=2-x^2,\ (0 \leqq x \leqq \sqrt{2})$を$z$軸の周りに回転して得られるものを平面$x=a$で切りとる.ただし$0 \leqq a \leqq \sqrt{2}$とする.そのとき切り口の平面に曲線$G$が現れた.$G$上の点$(x,\ y,\ z)$は,
\[ x=a,\quad z=2-a^2-y^2 \quad (-\sqrt{2-a^2} \leqq y \leqq \sqrt{2-a^2}) \]
をみたす.切り口の平面$x=a$上において点$(a,\ 0,\ 0)$と曲線$G$上の点の距離の最大値を$r(a)$とする.このとき下記の設問に答えよ.

(1)$0 \leqq a \leqq \sqrt{2}$に対して$r(a)$を求めよ.
(2)次の積分値を求めよ.
\[ \pi \int_1^{\sqrt{2}}(r(x))^2 \,dx \]
富山大学 国立 富山大学 2013年 第1問
関数$f(x)=x+2 \sin x$を考える.このとき,次の問いに答えよ.

(1)$y=f(x) \ (0 \leqq x \leqq 2\pi)$の増減を調べ,そのグラフをかけ.
(2)$0<x<2\pi$において関数$f(x)$が極値をとるときの$x$の値を$\alpha,\ \beta \ (0<\alpha<\beta<2\pi)$とする.曲線$y=f(x)$の$\alpha \leqq x \leqq \beta$の部分と$x$軸,および$2$直線$x=\alpha$,$x=\beta$で囲まれた部分を$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
富山大学 国立 富山大学 2013年 第3問
直線$y=ax (a>0)$と$x$軸,および直線$x=1$で囲まれた部分を$x$軸の周りに$1$回転させてできる立体の体積を$V$とし,曲線$y=x+\sin x (0 \leqq x \leqq 2\pi)$と$x$軸,および直線$x=2\pi$で囲まれた部分を$x$軸の周りに$1$回転させてできる立体の体積を$W$とする.このとき,次の問いに答えよ.

(1)$V$を$a$を用いて表せ.
(2)$0<x \leqq 2\pi$において,$x+\sin x>0$であることを示せ.
(3)$W$の値を求めよ.
(4)$V=W$のとき,$a$の値を求めよ.
富山大学 国立 富山大学 2013年 第1問
関数$f(x)=x+2 \sin x$を考える.このとき,次の問いに答えよ.

(1)$y=f(x) \ (0 \leqq x \leqq 2\pi)$の増減を調べ,そのグラフをかけ.
(2)$0<x<2\pi$において関数$f(x)$が極値をとるときの$x$の値を$\alpha,\ \beta \ (0<\alpha<\beta<2\pi)$とする.曲線$y=f(x)$の$\alpha \leqq x \leqq \beta$の部分と$x$軸,および$2$直線$x=\alpha$,$x=\beta$で囲まれた部分を$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
室蘭工業大学 国立 室蘭工業大学 2013年 第2問
$2$つの曲線
\[ y=\cos^2 x \ \left( -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2} \right) \quad \text{と} \quad y=\sin^2 x \ \left( -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2} \right) \]
を,それぞれ$C_1$と$C_2$とする.

(1)$C_1$と$C_2$の$2$つの交点の座標を求めよ.
(2)$C_1$と$C_2$で囲まれた部分$D$の面積を求めよ.
(3)$D$を$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
滋賀医科大学 国立 滋賀医科大学 2013年 第4問
$xy$平面において,連立不等式
\[ x^2+y^2 \leqq 1,\quad x \geqq 0,\quad y \geqq 0 \]
で定まる図形を$S$とする.$t$を$0<t<1$となる定数とし,$S$を直線$y=t$で$2$つの部分に切断する.$S_1$を$S$と領域$y \geqq t$の共通部分,$S_2$を$S$と領域$y \leqq t$の共通部分とする.

(1)図形$S_1,\ S_2$を描け.
(2)$S_1,\ S_2$を$y$軸の周りに$1$回転させてできる立体をそれぞれ$V_1,\ V_2$とする.不等式
\[ \frac{(S_1 \ \text{の面積})}{(S_2 \ \text{の面積})} \geqq \frac{(V_1 \ \text{の体積})}{(V_2 \ \text{の体積})} \]
を示せ.
九州工業大学 国立 九州工業大学 2013年 第1問
$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$の範囲において,曲線$C_1:y=\sin 2x$と曲線$C_2:y=\cos x$の交点の$x$座標を$a,\ b,\ c \ (a<b<c)$とする.以下の問いに答えよ.

(1)$a,\ b,\ c$の値を求めよ.
(2)交点$(b,\ \sin 2b)$における$2$つの曲線$C_1$と$C_2$のそれぞれの接線は垂直ではないことを示せ.
(3)$a \leqq x \leqq b$の範囲で$2$つの曲線$C_1,\ C_2$によって囲まれた部分の面積を$S_1$とし,$b \leqq x \leqq c$の範囲で$2$つの曲線$C_1,\ C_2$によって囲まれた部分の面積を$S_2$とするとき,$2$つの面積の比$S_1:S_2$を求めよ.
(4)曲線$C_1$の$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$の部分と$x$軸で囲まれた部分を,$x$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
スポンサーリンク

「周り」とは・・・

 まだこのタグの説明は執筆されていません。