タグ「周り」の検索結果

5ページ目:全89問中41問~50問を表示)
山形大学 国立 山形大学 2014年 第2問
以下の問いに答えよ.

(1)連立不等式$x^2+y^2 \leqq 25,\ y \geqq 4$を満たす領域を$y$軸の周りに一回転させてできる立体の体積を求めよ.
(2)連立不等式$x^2+y^2 \leq 25,\ x \geqq 4,\ y \geqq 0$を満たす領域を$y$軸の周りに一回転させてできる立体の体積を求めよ.
(3)連立不等式$x^2+y^2 \leqq 25,\ 0 \leqq x \leqq 4,\ 0 \leqq y \leqq 4$を満たす領域の面積を求めよ.ただし,$\displaystyle \sin \theta_0=\frac{3}{5}$を満たす角$\displaystyle \theta_0 \left( 0<\theta_0<\frac{\pi}{2} \right)$を使用せよ.
群馬大学 国立 群馬大学 2014年 第4問
曲線$y=\log x$上の点$\mathrm{P}(1,\ 0)$における接線と$y$軸の交点を$\mathrm{Q}$とする.$\mathrm{Q}$を通り$x$軸に平行な直線と曲線$y=\log x$の交点を$\mathrm{R}$とする.ここで,対数は自然対数である.このとき,以下の問いに答えよ.

(1)点$\mathrm{R}$の座標を求めよ.
(2)線分$\mathrm{PR}$と曲線$y=\log x$で囲まれた図形を$x$軸の周りに$1$回転してできる立体の体積$V$を求めよ.
群馬大学 国立 群馬大学 2014年 第3問
曲線$y=\log x$上の点$\mathrm{P}(1,\ 0)$における接線と$y$軸の交点を$\mathrm{Q}$とする.$\mathrm{Q}$を通り$x$軸に平行な直線と曲線$y=\log x$の交点を$\mathrm{R}$とする.ここで,対数は自然対数である.このとき,以下の問いに答えよ.

(1)点$\mathrm{R}$の座標を求めよ.
(2)線分$\mathrm{PR}$と曲線$y=\log x$で囲まれた図形を$x$軸の周りに$1$回転してできる立体の体積$V$を求めよ.
群馬大学 国立 群馬大学 2014年 第5問
座標平面上の曲線$C$は媒介変数$t (t \geqq 0)$を用いて$x=t^2+2t+\log (t+1)$,$y=t^2+2t-\log (t+1)$と表される.$C$上の点$\mathrm{P}(a,\ b)$における$C$の接線の傾きが$\displaystyle \frac{2e-1}{2e+1}$であるとする.ただし,$e$は自然対数の底である.このとき,以下の問いに答えよ.

(1)$a$と$b$の値を求めよ.
(2)$\mathrm{Q}$を座標$(b,\ a)$の点とする.直線$\mathrm{PQ}$,直線$y=x$と曲線$C$で囲まれた図形を,直線$y=x$の周りに$1$回転してできる立体の体積を求めよ.
電気通信大学 国立 電気通信大学 2014年 第2問
$2$つの関数
\[ f(x)=x \sqrt{4-x^2} (0 \leqq x \leqq 2),\quad g(y)=\sqrt{4-y^2} (0 \leqq y \leqq 2) \]
を考える.座標平面上において,曲線$y=f(x)$を$C_1$とし,曲線$x=g(y)$を$C_2$とする.このとき,以下の問いに答えよ.

(1)$C_1$と$C_2$との共有点の座標を求めよ.
(2)関数$f(x)$の最大値$M$を求めよ.
(3)$C_1$と$x$軸とで囲まれた図形の面積$S$を求めよ.
(4)点$(x,\ y)$が$C_1$上にあるとき,$x^2$を$y$を用いて表せ.
(5)$y$軸および$2$曲線$C_1$,$C_2$で囲まれた図形を,$y$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
津田塾大学 私立 津田塾大学 2014年 第3問
下図は,半径$1$の円を底面とする高さ$1$の円柱を,底面に垂直な平面で切り取ったものである.ここで,線分$\mathrm{OA}$は底面に垂直である.また,点$\mathrm{B}$,$\mathrm{E}$,$\mathrm{F}$は点$\mathrm{A}$を通り線分$\mathrm{OA}$に垂直な平面上にあり,線分$\mathrm{AF}$と$\mathrm{BE}$は垂直である.さらに,$\mathrm{F}$は線分$\mathrm{BE}$の中点であり,$\displaystyle \mathrm{AF}=\frac{3}{2}$である.線分$\mathrm{OA}$上に点$\mathrm{X}$をとり,$\mathrm{OX}=t$とする.$\mathrm{X}$を通り,線分$\mathrm{OA}$に垂直な平面と線分$\mathrm{EC}$との交点を$\mathrm{G}$とする.
(図は省略)

(1)$\mathrm{BF}$を求めよ.
(2)$\mathrm{XG}$を$t$を用いて表せ.
(3)$\mathrm{X}$が$\mathrm{O}$から$\mathrm{A}$まで動くとき,線分$\mathrm{XG}$を線分$\mathrm{OA}$の周りに回転してできる図形が通過してできる立体の体積$V$を求めよ.
九州産業大学 私立 九州産業大学 2014年 第5問
関数$f(x)=2x \sqrt{2+x^2}$について考える.

(1)導関数$f^\prime(x)=[ア]$である.
(2)第$2$次導関数$f^{\prime\prime}(x)=[イ]$であり,$x=[ウ]$のとき$f^{\prime\prime}(x)=0$となる.
(3)曲線$y=f(x)$と$x$軸,および直線$x=1$で囲まれた部分の面積は$[エ]$である.
(4)曲線$y=f(x)$と$x$軸,および直線$x=1$で囲まれた部分を,$x$軸の周りに$1$回転させてできる立体の体積は$[オ]$である.
獨協医科大学 私立 獨協医科大学 2014年 第5問
関数$f(x)=2x+\cos x$がある.$xy$平面上の曲線$y=f(x)$の$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の部分を$C$とし,$C$と直線$y=2x$,および直線$x+2y=2$で囲まれた領域を$D$とする.領域$D$を直線$y=2x$の周りに$1$回転してできる立体の体積を求めよう.
(図は省略)

$C$上の点$\mathrm{P}(t,\ f(t))$から直線$y=2x$に下ろした垂線と直線$y=2x$との交点を$\mathrm{Q}$とする.
線分$\mathrm{PQ}$の長さは
\[ \frac{|\cos t|}{\sqrt{[ア]}} \]
であり,点$\mathrm{Q}$の$x$座標は
\[ t+\frac{[イ]}{[ウ]} \cos t \]
である.これから,$\mathrm{OQ}=s$とおくと
\[ s=\sqrt{[エ]} \left( t+\frac{[イ]}{[ウ]} \cos t \right) \]
である.
$f^\prime(x)=2-\sin x>0$なので$f(x)$は増加する.よって,求める体積$V$は

$\displaystyle V=\int_{\frac{2 \sqrt{5}}{5}}^{\frac{\sqrt{5} \pi}{2}} \pi \mathrm{PQ}^2 \, ds$

$\displaystyle \quad\, =\frac{\sqrt{[オ]} \pi}{[カ]} \int_0^{\frac{\pi}{2}} \left( \cos^2 t-\frac{[キ]}{[ク]} \cos^2 t \sin t \right) \, dt$

$\displaystyle \quad\, =\frac{\sqrt{[ケ]} \pi^2}{[コサ]}-\frac{[シ] \sqrt{[ス]} \pi}{[セソ]}$
である.
和歌山県立医科大学 公立 和歌山県立医科大学 2014年 第1問
$f(x)=x^4-2x^3+2x+4$,$g(x)=-1-3 \sqrt{|x-1|}$とする.このとき,次の問いに答えよ.

(1)関数$y=f(x)$のグラフの概形を描け.ただし,変曲点に留意しなくてよい.
(2)$2$つの曲線$y=f(x)$と$y=g(x)$,および$2$つの直線$x=-1$と$x=2$で囲まれた図形を$x$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
岐阜薬科大学 公立 岐阜薬科大学 2014年 第4問
$xy$平面において,原点$\mathrm{O}$を中心とする半径$4$の円$C$の内側を半径$1$の円$C^\prime$が内接しながら滑ることなく転がるとき,円$C^\prime$上の点$\mathrm{P}$が描く曲線を$X$とする.ただし,点$\mathrm{P}$のはじめの位置は点$\mathrm{P}_0(4,\ 0)$とする.円$C^\prime$の中心$\mathrm{O}^\prime$が原点$\mathrm{O}$の周りを$\theta$だけ回転したときの点$\mathrm{P}$の座標を$(x,\ y)$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OO}^\prime}$の成分を$\theta$を用いて表せ.
(2)$x,\ y$を$\theta$を用いて表せ.
(3)点$\mathrm{P}$における曲線$X$の接線と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とするとき,線分$\mathrm{QR}$の長さは一定であることを示せ.ただし,点$\mathrm{P}$は座標軸上の点ではないものとする.
スポンサーリンク

「周り」とは・・・

 まだこのタグの説明は執筆されていません。