タグ「周り」の検索結果

4ページ目:全89問中31問~40問を表示)
東京理科大学 私立 東京理科大学 2015年 第3問
正の定数$a (a \neq 1)$に対して,$2$次関数$f(x)$を
\[ f(x)=ax(1-x) \]
と定める.曲線$C:y=f(x)$の点$(1,\ 0)$における接線を$\ell_1$,直線$y=-x$を$\ell_2$とする.曲線$C$の$x \leqq 1$の部分と$2$直線$\ell_1$,$\ell_2$で囲まれる部分の面積を$S$で表し,また,この部分を$x$軸の周りに$1$回転してできる図形の体積を$V$で表す.

(1)直線$\ell_1,\ \ell_2$の交点の座標を$a$を用いて表せ.
(2)$S$を$a$を用いて表せ.
(3)定数$a$は$a>1$を満たすものとする.$2$直線$\ell_1$,$\ell_2$と$x$軸で囲まれる部分を$x$軸の周りに$1$回転してできる図形の体積を$U$で表すとき,
\[ \frac{30a^3}{(a-1)^4 \pi}(V-U) \]
を$a$の$1$次式で表せ.
(4)$\displaystyle \lim_{a \to 1+0}(a-1)^2V$の値を求めよ.
北里大学 私立 北里大学 2015年 第1問
次の$[ ]$にあてはまる答を記せ.

(1)$k$を定数とするとき,方程式$\sqrt{4x-3}=x+k$の実数解の個数が$2$個となる$k$の値の範囲は$[ア]$,実数解の個数が$1$個となる$k$の値の範囲は$[イ]$である.また,曲線$y=\sqrt{4x-3}$と直線$y=x$で囲まれた部分を,$x$軸の周りに$1$回転させてできる立体の体積は$[ウ]$である.
(2)曲線$y=kx^3-1$と曲線$y=\log x$が共有点をもち,その点において共通の接線をもつとするとき,定数$k$の値は$[エ]$,共通の接線の方程式は$y=[オ]$である.
(3)数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とするとき,$\{a_n\}$は
\[ a_1=1,\quad a_{n+1}=S_n+n^2+1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たす.このとき,$a_4=[カ]$であり,$\{a_n\}$の一般項は$a_n=[キ]$である.また,$S_n=[ク]$である.
(4)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=3$,$\mathrm{AC}=4$,$\displaystyle \angle \mathrm{A}=\frac{\pi}{3}$である.$\triangle \mathrm{ABC}$の外心を$\mathrm{O}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおく.

(i) $\triangle \mathrm{ABC}$の外接円の半径は$[ケ]$である.
(ii) $\overrightarrow{\mathrm{AO}}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表すと$\overrightarrow{\mathrm{AO}}=[コ] \overrightarrow{b}+[サ] \overrightarrow{c}$である.
(iii) 直線$\mathrm{BO}$と辺$\mathrm{AC}$の交点を$\mathrm{P}$とするとき,$\mathrm{AP}:\mathrm{PC}$は$[シ]$である.

(5)$\mathrm{X}$君と$\mathrm{Y}$さんは,毎日正午に次の規則にしたがって食事をとる.

(i) 食堂$\mathrm{A}$,食堂$\mathrm{B}$,食堂$\mathrm{C}$のいずれかで食事をとる.
(ii) 食堂は前日とは異なる$2$つの食堂のうちの$1$つを無作為に選ぶ.
(iii) $2$人が同じ食堂を選んだ日は,必ず一緒に食事をとる.

$1$日目,$2$人は別々の食堂で食事をとったとする.このとき,$3$日目に初めて$2$人が一緒に食事をとる確率は$[ス]$である.また,$2$人が一緒に食事をとる$2$回目の日が$7$日目となる確率は$[セ]$である.
首都大学東京 公立 首都大学東京 2015年 第1問
以下の問いに答えなさい.

(1)次の不定積分を求めなさい.
\[ \int e^{-2x} \cos 2x \, dx \]
(2)$n$を正の整数とする.曲線
\[ y=e^{-x} \sin x \quad ((n-1) \pi \leqq x \leqq n\pi) \]
と$x$軸で囲まれる部分を$x$軸の周りに$1$回転させてできる立体の体積$V_n$を求めなさい.
(3)$(2)$で求めた$V_n$に対して,$\displaystyle \sum_{n=1}^\infty V_{2n-1}=V_1+V_3+V_5+\cdots$を求めなさい.
大阪市立大学 公立 大阪市立大学 2015年 第4問
$\mathrm{O}$を原点とする座標空間内に点$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(1,\ 0,\ 1)$,$\mathrm{C}(1,\ 1,\ 1)$が与えられている.線分$\mathrm{OC}$を$1$つの対角線とし,線分$\mathrm{AB}$を一辺とする立方体を直線$\mathrm{OC}$の周りに回転して得られる回転体$K$の体積を求めたい.次の問いに答えよ.

(1)点$\mathrm{P}(0,\ 0,\ p) (0<p \leqq 1)$から直線$\mathrm{OC}$へ垂線を引いたときの交点$\mathrm{H}$の座標と線分$\mathrm{PH}$の長さを求めよ.
(2)点$\mathrm{Q}(q,\ 0,\ 1) (0 \leqq q \leqq 1)$から直線$\mathrm{OC}$へ垂線を引いたときの交点$\mathrm{I}$の座標と線分$\mathrm{QI}$の長さを求めよ.
(3)原点$\mathrm{O}$から点$\mathrm{C}$方向へ線分$\mathrm{OC}$上を距離$u (0 \leqq u \leqq \sqrt{3})$だけ進んだ点を$\mathrm{U}$とする.点$\mathrm{U}$を通り直線$\mathrm{OC}$に垂直な平面で$K$を切ったときの切り口の円の半径$r$を$u$の関数として表せ.
(4)$K$の体積を求めよ.
大阪府立大学 公立 大阪府立大学 2015年 第5問
座標平面上において,原点$\mathrm{O}$を中心とする半径$1$の円$C_0$に,半径$1$の円$C_1$が外接しながらすべることなく回転する.点$\mathrm{A}$を動く円$C_1$の中心とし,点$\mathrm{P}$を円$C_1$の円周上の定点とする.最初,点$\mathrm{A}$は座標$(2,\ 0)$の位置にあり,点$\mathrm{P}$は座標$(1,\ 0)$の位置にある.円$C_1$が円$C_0$の周りを反時計まわりに一周し,点$\mathrm{A}$が座標$(2,\ 0)$に戻ってくるとき,点$\mathrm{P}$のえがく曲線を$C$とする.動径$\mathrm{OA}$が$x$軸の正の部分から角$\theta (0 \leqq \theta \leqq 2\pi)$だけ回転した位置にあるとき,点$\mathrm{P}$の座標を$(x(\theta),\ y(\theta))$とする.このとき,次の問いに答えよ.

(1)点$\mathrm{P}$の座標$(x(\theta),\ y(\theta))$について,
\[ x(\theta)=2 \cos \theta-\cos 2\theta,\quad y(\theta)=2 \sin \theta-\sin 2\theta \]
が成り立つことを示せ.
(2)導関数$\displaystyle \frac{d}{d\theta} x(\theta)$を求め,$x(\theta)$の$\theta$に関する増減表を作成せよ.ただし,凹凸については言及しなくてよい.
(3)曲線$C$で囲まれる図形の面積$S$を求めよ.
熊本大学 国立 熊本大学 2014年 第4問
$a$を$a>2$である実数とする.$xy$平面上の曲線$\displaystyle C:y=\frac{1}{\sin x \cos x} (0<x<\frac{\pi}{2})$と直線$y=a$の交点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とする.以下の問いに答えよ.

(1)$\tan \alpha$および$\tan \beta$を$a$を用いて表せ.
(2)$C$と$x$軸,および$2$直線$x=\alpha$,$x=\beta$で囲まれた領域を$S$とする.$S$の面積を$a$を用いて表せ.
(3)$S$を$x$軸の周りに回転して得られる立体の体積$V$を$a$を用いて表せ.
熊本大学 国立 熊本大学 2014年 第4問
$a$を正の実数とする.$xy$平面上の曲線$C:y=e^{ax}$の接線で,原点を通るものを$\ell$とし,$C$と$\ell$および$y$軸で囲まれた領域を$S$とする.以下の問いに答えよ.

(1)$S$を$x$軸の周りに回転して得られる立体の体積$V_1$を求めよ.
(2)$S$を$y$軸の周りに回転して得られる立体の体積$V_2$を求めよ.
(3)$V_1=V_2$となるときの$a$の値を求めよ.
佐賀大学 国立 佐賀大学 2014年 第1問
$a$を$\displaystyle \frac{\pi}{2}<a<\pi$を満たす定数とする.$2$つの曲線
\[ y=\sin x \left( \frac{\pi}{4} \leqq x \leqq a \right),\quad y=\cos x \left( \frac{\pi}{4} \leqq x \leqq \frac{\pi}{2} \right) \]
と$2$つの直線$x=a$,$y=0$で囲まれる図形を$D$とする.このとき,次の問に答えよ.

(1)$D$の面積$S$を求めよ.
(2)$D$を$x$軸の周りに$1$回転してできる立体の体積$V$を求めよ.
富山大学 国立 富山大学 2014年 第2問
次の問いに答えよ.

(1)$0 \leqq x \leqq \pi$の範囲で方程式$\cos 2x-\cos x=0$の解を求めよ.
(2)$0 \leqq x \leqq \pi$の範囲で$2$つの曲線$y=\cos 2x$と$y=\cos x$で囲まれた図形の面積$S$を求めよ.
(3)$(2)$の図形を$x$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
山梨大学 国立 山梨大学 2014年 第5問
曲線$C$は媒介変数$t (0 \leqq t \leqq 2\pi)$によって,$x=t-\sin t$,$y=1-\cos t$と表される.

(1)$x$は$t$の関数として増加関数であることを示せ.
(2)$0<t<2\pi$のとき,$\displaystyle \frac{dy}{dx}$を$t$を用いた式で表せ.また,$y$の$x$に関する増減を調べよ.
(3)不定積分$\displaystyle \int \cos^2 t \, dt$および$\displaystyle \int \cos^3 t \, dt$を求めよ.
(4)曲線$C$と$x$軸で囲まれた図形を$x$軸の周りに$1$回転させてできる回転体の体積を求めよ.
スポンサーリンク

「周り」とは・・・

 まだこのタグの説明は執筆されていません。