タグ「向き」の検索結果

6ページ目:全74問中51問~60問を表示)
大阪薬科大学 私立 大阪薬科大学 2012年 第3問
次の問いに答えなさい.

原点を$\mathrm{O}$とする$xy$座標平面に,点$\mathrm{A}(3,\ 4)$がある.$\mathrm{O}$を中心に反時計回りに$\displaystyle \frac{1}{4}\pi$だけ回転することで,$\mathrm{A}$は点$\mathrm{B}$に移る.

(1)$\overrightarrow{\mathrm{OA}}$と$x$軸の正の向きがなす角を$\alpha$とすると,$\tan \alpha=[$\mathrm{J]$}$である.
(2)$\overrightarrow{\mathrm{OB}}$の成分は$[$\mathrm{K]$}$である.
(3)$\overrightarrow{\mathrm{OC}}=-2 \sqrt{2} \, \overrightarrow{\mathrm{OB}}$となる点$\mathrm{C}$を定め,$\mathrm{OA}$と$\mathrm{OC}$を$2$辺とする平行四辺形$\mathrm{OAPC}$を考える.また,$\mathrm{O}$と$\mathrm{P}$を通る直線を$\ell$とする.

(i) $\ell$の方程式は,$y=[$\mathrm{L]$}$である.
(ii) $3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{C}$を通る放物線と$\ell$で囲まれる部分の面積は,$[$\mathrm{M]$}$である.
(iii) $\mathrm{AP}$を$(1-t):t$に内分する点を$\mathrm{D}$,$\mathrm{CD}$と$\ell$の交点を$\mathrm{E}$とするとき,$\mathrm{DE}:\mathrm{EC}$を$[う]$で求めなさい.
群馬大学 国立 群馬大学 2011年 第2問
平面上で原点Oを通り$x$軸の正の向きと$\theta$の角をなす直線を$\ell$とする.$\theta$を$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲で動かすとき,点A$(2,\ 0)$から$\ell$へ下ろした垂線をAG,点B$(0,\ 1)$から$\ell$へ下ろした垂線をBHとし,折れ線の長さ$\text{AG}+\text{GH}+\text{HB}$を$L$とする.ただし,$\theta = 0$のときはGはAに等しく,$\displaystyle \theta=\frac{\pi}{2}$のときはHはBに等しいものとする.直線$\ell$の傾きは0以上とする.

(1)$\text{GH} = 0$となるときの$\theta$の値を$\alpha$とするとき,$\tan \alpha$の値を求めよ.
(2)$L$の最小値と,そのときの$\tan \theta$の値を求めよ.
(3)$L$の最大値と,そのときの$\tan \theta$の値を求めよ.
群馬大学 国立 群馬大学 2011年 第2問
平面上で原点Oを通り$x$軸の正の向きと$\theta$の角をなす直線を$\ell$とする.$\theta$を$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲で動かすとき,点A$(2,\ 0)$から$\ell$へ下ろした垂線をAG,点B$(0,\ 1)$から$\ell$へ下ろした垂線をBHとし,折れ線の長さ$\text{AG}+\text{GH}+\text{HB}$を$L$とする.ただし,$\theta = 0$のときはGはAに等しく,$\displaystyle \theta=\frac{\pi}{2}$のときはHはBに等しいものとする.直線$\ell$の傾きは0以上とする.

(1)$\text{GH} = 0$となるときの$\theta$の値を$\alpha$とするとき,$\tan \alpha$の値を求めよ.
(2)$L$の最小値と,そのときの$\tan \theta$の値を求めよ.
(3)$L$の最大値と,そのときの$\tan \theta$の値を求めよ.
新潟大学 国立 新潟大学 2011年 第2問
数直線上の動点Aがはじめ原点にある.動点Aは1秒ごとに数直線上を正の向きまたは負の向きにそれぞれ$\displaystyle \frac{1}{2}$の確率で指定された長さを移動するものとする.$n$秒後に動点Aが原点に戻る確率を$p_n$とする.ただし,$n$は自然数とする.このとき,次の問いに答えよ.

(1)動点Aが1秒ごとに正の向きに1または負の向きに1移動するとき,$p_1,\ p_2$を求めよ.
(2)動点Aが1秒ごとに正の向きに1または負の向きに1移動するとき,$p_n$を求めよ.
(3)動点Aが1秒ごとに正の向きに3または負の向きに1移動するとき,$p_n$を求めよ.
新潟大学 国立 新潟大学 2011年 第2問
数直線上の動点Aがはじめ原点にある.動点Aは1秒ごとに数直線上を正の向きまたは負の向きにそれぞれ$\displaystyle \frac{1}{2}$の確率で指定された長さを移動するものとする.$n$秒後に動点Aが原点に戻る確率を$p_n$とする.ただし,$n$は自然数とする.このとき,次の問いに答えよ.

(1)動点Aが1秒ごとに正の向きに1または負の向きに1移動するとき,$p_1,\ p_2,\ p_3,\ p_4$を求めよ.
(2)動点Aが1秒ごとに正の向きに2または負の向きに1移動するとき,$p_6$を求めよ.
奈良教育大学 国立 奈良教育大学 2011年 第1問
以下の設問に答えよ.

(1)初項$a$,公比$r$の無限等比級数は$|\,r\,|<1$のとき収束し,その和が$\displaystyle \frac{a}{1-r}$となることを示せ.
(2)座標平面上で,動点Pが点$(1,\ 1)$から$x$軸の負の向きに1だけ進み,次に$y$軸の負の向きに$\displaystyle \frac{1}{3}$だけ進み,次に$x$軸の負の向きに$\displaystyle \frac{1}{3^2}$だけ進み,次に$y$軸の負の向きに$\displaystyle \frac{1}{3^3}$だけ進む.以下,動点Pがこのような運動を続けるとき,動点Pが限りなく近づく点の座標を求めよ.
茨城大学 国立 茨城大学 2011年 第3問
1個のさいころを続けて4回投げて,出た目の数を順に$a,\ b,\ c,\ d$とする.このとき,座標平面上の点P$_1$,P$_2$,P$_3$,P$_4$を手順1から手順4で定める.

手順1.原点Oから$x$軸の正の向きに$a$だけ移動した点をP$_1$とする.
手順2.点P$_1$から$y$軸の正の向きに$b$だけ移動した点をP$_2$とする.
手順3.点P$_2$から$x$軸の負の向きに$c$だけ移動した点をP$_3$とする.
手順4.点P$_3$から$y$軸の負の向きに$d$だけ移動した点をP$_4$とする.

以下の各問に答えよ.

(1)点P$_4$の座標を$a,\ b,\ c,\ d$を用いて表せ.
(2)点P$_4$の座標が$(1,\ 2)$である確率を求めよ.
(3)2つの線分OP$_1$とP$_3$P$_4$が共有点をもつ確率を求めよ.
長崎大学 国立 長崎大学 2011年 第2問
$3$辺の長さが$\mathrm{AB}=4,\ \mathrm{BC}=3,\ \mathrm{CA}=5$である直角三角形$\mathrm{ABC}$と,その内側にあって$2$辺$\mathrm{AB}$および$\mathrm{AC}$に接する円$\mathrm{O}$を考える.この円の半径を$r$とし,中心$\mathrm{O}$から$\mathrm{AB}$に引いた垂線と$\mathrm{AB}$との交点を$\mathrm{H}$とする.また,ベクトル$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AC}}$と同じ向きで大きさが$1$のベクトルを,それぞれ$\overrightarrow{u},\ \overrightarrow{v}$とし,$\overrightarrow{\mathrm{AH}}=t \overrightarrow{u} \ (t>0)$とする.次の問いに答えよ.

(1)直線$\mathrm{AO}$と辺$\mathrm{BC}$の交点を$\mathrm{M}$とするとき,ベクトル$\overrightarrow{\mathrm{AM}}$を$\overrightarrow{u}$と$\overrightarrow{v}$を用いて表せ.
(2)ベクトル$\overrightarrow{u},\ \overrightarrow{v}$の内積$\overrightarrow{u} \cdot \overrightarrow{v}$を求め,ベクトル$\overrightarrow{\mathrm{AO}}$と$\overrightarrow{\mathrm{HO}}$を,それぞれ$\overrightarrow{u},\ \overrightarrow{v}$および$t$を用いて表せ.また,円$\mathrm{O}$の半径$r$を$t$で表せ.
(3)円$\mathrm{O}$が辺$\mathrm{BC}$にも接するとき,その中心を$\mathrm{I}$とする.すなわち,$\mathrm{I}$は三角形$\mathrm{ABC}$の内心である.そのときの$t$の値と,内接円$\mathrm{I}$の半径を求めよ.
(4)円$\mathrm{O}$と内接円$\mathrm{I}$が共有点をもたないような$t$の範囲を求めよ.
立教大学 私立 立教大学 2011年 第3問
放物線$y=x^2$上の点$(a,\ a^2)$を$\mathrm{A}$とし,点$\mathrm{A}$における放物線の接線を$\ell$とする.ただし,$a>0$とする.また,$x$軸上の点$(a,\ 0)$の直線$\ell$について対称な点を$\mathrm{B}$とし,点$\mathrm{A}$,$\mathrm{B}$を通る直線を$m$とする.このとき,次の問$(1)$~$(4)$に答えよ.

(1)直線$\ell$と$x$軸の正の向きとのなす角を$\theta$とし,また,直線$m$と$x$軸の正の向きとのなす角を$\gamma$とする.$\gamma$を$\theta$と$\pi$を用いて表せ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$,$\displaystyle -\frac{\pi}{2}<\gamma<\frac{\pi}{2}$とする.
(2)直線$m$の傾き$\tan \gamma$を$\tan \theta$で表せ.
(3)直線$m$の方程式を$a$を用いて表せ.
(4)直線$m$が,$a$の値によらず,必ず通過する点の座標を求めよ.
藤田保健衛生大学 私立 藤田保健衛生大学 2011年 第3問
次の問いに答えよ.

(1)$y=3 \cos x$のグラフ上の$1$点$\displaystyle \left( \frac{\pi}{6},\ \frac{3 \sqrt{3}}{2} \right)$における接線に平行な単位ベクトルを$\overrightarrow{a}=(a_1,\ a_2)$,垂直な単位ベクトルを$\overrightarrow{b}=(b_1,\ b_2)$とすると,$(a_1,\ a_2)=[ ]$,$(b_1,\ b_2)=[ ]$である.
(2)$a_1>0$,$\sqrt{13}(a_1,\ a_2)=(A_1,\ A_2)$とおくとき,行列$A=\left( \begin{array}{cc}
A_1+2 & A_2-2 \\
A_1 & A_2
\end{array} \right)$に対し,連立方程式$A \left( \begin{array}{c}
x \\
y
\end{array} \right)=m \left( \begin{array}{c}
x \\
y
\end{array} \right)$が$(x,\ y)=(0,\ 0)$以外の解をもつとき,定数$m$の値は$[ ]$である.次に行列$A$で表される$1$次変換によって,点$\mathrm{P}(x,\ y)$が点$\mathrm{Q}(X,\ Y)$に移り,ベクトル$\overrightarrow{\mathrm{OP}}$とベクトル$\overrightarrow{\mathrm{OQ}}$が同じ向きになったという.ただし点$\mathrm{O}(0,\ 0)$であり,$x \neq 0$とする.このとき$\overrightarrow{\mathrm{OQ}}=k \overrightarrow{\mathrm{OP}}$となる定数$k$の値は$[ ]$である.さらにこのとき直線$\mathrm{PQ}$の方程式は$y=[ ]$である.
スポンサーリンク

「向き」とは・・・

 まだこのタグの説明は執筆されていません。