タグ「同一」の検索結果

5ページ目:全106問中41問~50問を表示)
東京理科大学 私立 東京理科大学 2014年 第2問
平面上に同一直線上にない$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が与えられているとし,$\triangle \mathrm{ABC}$の内部の点$\mathrm{P}$が
\[ 4 \overrightarrow{\mathrm{AP}}+7 \overrightarrow{\mathrm{BP}}+2 \overrightarrow{\mathrm{CP}}=\overrightarrow{\mathrm{0}} \]
を満たしているとする.線分$\mathrm{AP}$を延長した直線と線分$\mathrm{BC}$との交点を$\mathrm{Q}$,線分$\mathrm{BP}$を延長した直線と線分$\mathrm{AC}$との交点を$\mathrm{R}$とおく.


(1)$\displaystyle \overrightarrow{\mathrm{AP}}=\frac{[ア]}{[イ][ウ]} \overrightarrow{\mathrm{AB}}+\frac{[エ]}{[オ][カ]} \overrightarrow{\mathrm{AC}}$である.

(2)点$\mathrm{P}$は線分$\mathrm{AQ}$を$[キ]:[ク]$に内分する点であり,点$\mathrm{Q}$は線分$\mathrm{BC}$を$[ケ]:[コ]$に内分する点である.
(3)$\triangle \mathrm{APB}$の面積を$S$,四角形$\mathrm{CQPR}$の面積を$T$とおくと,
\[ S:T=[サ]:[シ][ス] \]
である.
大阪市立大学 公立 大阪市立大学 2014年 第2問
座標空間内に$4$点$\mathrm{A}(0,\ -1,\ 0)$,$\mathrm{B}(2,\ 0,\ 1)$,$\mathrm{C}(0,\ t,\ -1)$,$\mathrm{D}(u,\ 2,\ 1)$がある.ただし,$t,\ u$は実数であり,$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$は垂直であるとする.次の問いに答えよ.

(1)$t$の値を求めよ.
(2)$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AC}}$の両方に垂直で大きさが$1$のベクトル$\overrightarrow{n}=(p,\ q,\ r)$のうち$p>0$となるものを求めよ.
(3)$4$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$が同一平面に含まれるならば$u=4$であることを示せ.
(4)$u=3$のとき四面体$\mathrm{ABCD}$の体積を求めよ.
大阪市立大学 公立 大阪市立大学 2014年 第4問
座標空間内に$4$点$\mathrm{A}(0,\ -1,\ 0)$,$\mathrm{B}(2,\ t,\ 1-t)$,$\mathrm{C}(0,\ s,\ -1)$,$\mathrm{D}(3,\ 2,\ 1)$がある.ただし,$t$と$s$は実数で$t>-1$をみたし,また$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$は垂直であるとする.次の問いに答えよ.

(1)$s$を$t$を用いて表せ.
(2)$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AC}}$の両方に垂直で大きさが$1$のベクトル$\overrightarrow{n}=(p,\ q,\ r)$のうち$p>0$となるものを$t$を用いて表せ.
(3)$4$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$が同一平面に含まれるための必要十分条件は,$\displaystyle t=-\frac{1}{3}$または$t=1$であることを証明せよ.
首都大学東京 公立 首都大学東京 2014年 第2問
空間内の$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$について,どの$3$点も同一直線上にはないとする.また,正の実数$a,\ b$は$\sqrt{2}a<b<2a$を満たすとし,$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=a$,$\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=b$とする.以下の問いに答えなさい.

(1)三角形$\mathrm{OAB}$は鈍角三角形であることを示しなさい.
(2)線分$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{OC}$上(ただし,端点を除く)にそれぞれ点$\mathrm{A}^\prime$,$\mathrm{B}^\prime$,$\mathrm{C}^\prime$があり,三角形$\mathrm{A}^\prime \mathrm{B}^\prime \mathrm{C}^\prime$は正三角形であるとする.このとき,直線$\mathrm{AB}$と直線$\mathrm{A}^\prime \mathrm{B}^\prime$は平行であることを示しなさい.
兵庫県立大学 公立 兵庫県立大学 2014年 第5問
三辺の長さ$x,\ y,\ z$がすべて自然数であり,$x+y+z=100$,$1 \leqq x \leqq y \leqq z$を満たす三角形について考える.ただし,合同な三角形は同一視して考える.次の問に答えなさい.

(1)最大辺の長さ$z$の取り得る値の範囲を求めなさい.
(2)与えられた条件を満たす三角形のうち,最大辺の長さが$45$の三角形は何個あるか.
(3)与えられた条件を満たす三角形は全部で何個あるか.
岩手県立大学 公立 岩手県立大学 2014年 第4問
以下の問いに答えなさい.

下図のように,外接円と内接円の中心が同一となる$\triangle \mathrm{ABC}$を考える.この中心を$\mathrm{O}$とし,$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{OC}$と$\triangle \mathrm{ABC}$の内接円との交点をそれぞれ$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.このとき,$\triangle \mathrm{ABC}$の内接円は$\triangle \mathrm{DEF}$の外接円にあたる.すなわち,$\triangle \mathrm{ABC}$の内心が$\triangle \mathrm{DEF}$の外心となっている.
(図は省略)
(1)$\triangle \mathrm{ABC}$および$\triangle \mathrm{DEF}$がいずれも正三角形であることを示しなさい.
(2)$\triangle \mathrm{ABC}$の外接円の半径$\mathrm{OA}$と$\triangle \mathrm{DEF}$の外接円の半径$\mathrm{OD}$との長さの比を求めなさい.
(3)ここで,改めて,$\triangle \mathrm{ABC}$を$(\triangle \mathrm{ABC})_1$,$\triangle \mathrm{DEF}$を$(\triangle \mathrm{ABC})_2$のように表し,一辺の長さが$a$である$(\triangle \mathrm{ABC})_1$の内接円をもとに$(\triangle \mathrm{ABC})_2$を描き,この$(\triangle \mathrm{ABC})_2$の内接円をもとに$(\triangle \mathrm{ABC})_3$を描くということを繰り返していく.このようにして,$(\triangle \mathrm{ABC})_n$を描いたとき,$(\triangle \mathrm{ABC})_n$の一辺の長さを$a$を用いて表しなさい.
京都府立大学 公立 京都府立大学 2014年 第1問
$\mathrm{O}$を原点とする$xyz$空間内に$5$点$\mathrm{A}(10,\ 0,\ 0)$,$\mathrm{B}(10,\ 5 \sqrt{3},\ 15)$,$\mathrm{C}(8,\ -\sqrt{3},\ -3)$,$\mathrm{D}(8,\ 5 \sqrt{3},\ 15)$,$\mathrm{E}(-4,\ \sqrt{3},\ 3)$をとる.$2$点$\mathrm{O}$,$\mathrm{A}$を通る直線を$\ell_1$,$2$点$\mathrm{O}$,$\mathrm{B}$を通る直線を$\ell_2$,$2$点$\mathrm{C}$,$\mathrm{D}$を通る直線を$\ell_3$,$2$点$\mathrm{C}$,$\mathrm{E}$を通る直線を$\ell_4$とする.$2$つの直線$\ell_1$,$\ell_3$の交点を$\mathrm{F}$,$2$つの直線$\ell_2$,$\ell_3$の交点を$\mathrm{G}$,$2$つの直線$\ell_2$,$\ell_4$の交点を$\mathrm{H}$,$2$つの直線$\ell_1$,$\ell_4$の交点を$\mathrm{I}$とする.以下の問いに答えよ.

(1)$6$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$は同一平面上にあることを示せ.
(2)$4$点$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$,$\mathrm{I}$の座標を求めよ.
(3)四角形$\mathrm{FGHI}$の面積を求めよ.
(4)四角形$\mathrm{FGHI}$に外接する円の中心座標と半径を求めよ.
名古屋大学 国立 名古屋大学 2013年 第2問
平面上に同じ点$\mathrm{O}$を中心とする半径$1$の円$C_1$と半径$2$の円$C_2$があり,$C_1$の周上に定点$\mathrm{A}$がある.点$\mathrm{P}$,$\mathrm{Q}$はそれぞれ$C_1$,$C_2$の周上を反時計回りに動き,ともに時間$t$の間に弧長$t$だけ進む.時刻$t=0$において,$\mathrm{P}$は$\mathrm{A}$の位置にあって$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$はこの順に同一直線上に並んでいる.$0 \leqq t \leqq 4\pi$のとき$\triangle \mathrm{APQ}$の面積の$2$乗の最大値を求めよ.
愛知教育大学 国立 愛知教育大学 2013年 第5問
同一直線上にない$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$がある.線分$\mathrm{OB}$を$3:2$に内分する点を$\mathrm{C}$,線分$\mathrm{AB}$を$s:(1-s) \ (0<s<1)$に内分する点を$\mathrm{D}$とし,線分$\mathrm{OD}$と線分$\mathrm{AC}$の交点を$\mathrm{E}$とする.以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおくとき,$\overrightarrow{\mathrm{OE}}$を$\overrightarrow{a}$,$\overrightarrow{b}$と$s$を用いて表せ.
(2)$\triangle \mathrm{OAE}$と$\triangle \mathrm{OCE}$の面積が等しくなるような$s$の値を求めよ.
旭川医科大学 国立 旭川医科大学 2013年 第2問
$a$を正の実数とする.双曲線$C:x^2-a^2y^2+a^2=0$上の$4$点$\mathrm{A}_1(0,\ 1)$,$\mathrm{A}_2(0,\ -1)$,$\mathrm{A}_3(a,\ \sqrt{2})$,$\mathrm{A}_4(-2a,\ -\sqrt{5})$が与えられている.$\mathrm{A}_1$における$C$の接線を$\ell_1$,$\mathrm{A}_3$における$C$の接線を$\ell_3$とする.次の問いに答えよ.

(1)$\ell_1$と$\ell_3$の交点$\mathrm{S}$の座標を求めよ.
(2)直線$\mathrm{A}_1 \mathrm{A}_2$と直線$\mathrm{A}_3 \mathrm{A}_4$の交点$\mathrm{U}$の座標,および直線$\mathrm{A}_1 \mathrm{A}_4$と直線$\mathrm{A}_2 \mathrm{A}_3$の交点$\mathrm{V}$の座標を求めよ.
(3)$3$点$\mathrm{S}$,$\mathrm{U}$,$\mathrm{V}$が同一線上にあることを示せ.
スポンサーリンク

「同一」とは・・・

 まだこのタグの説明は執筆されていません。