タグ「同一」の検索結果

3ページ目:全106問中21問~30問を表示)
愛知教育大学 国立 愛知教育大学 2015年 第2問
円$C$上に異なる$2$点$\mathrm{P}$,$\mathrm{Q}$をとり,点$\mathrm{P}$における$C$の接線$\ell$と点$\mathrm{Q}$における$C$の接線$m$が交わっているとする.$\ell$と$m$の交点を$\mathrm{R}$とし,$\mathrm{R}$とは異なる$m$上の点$\mathrm{S}$を$\mathrm{QR}=\mathrm{QS}$を満たすように定める.また,$2$点$\mathrm{P}$,$\mathrm{S}$を通る直線と円$C$との交点で$\mathrm{P}$とは異なる点を$\mathrm{T}$とする.さらに,$\mathrm{Q}$を中心に$\mathrm{T}$を${180}^\circ$回転した点を$\mathrm{T}^\prime$とする.

(1)$4$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{T}^\prime$,$\mathrm{R}$が同一円周上にあることを示せ.
(2)$\mathrm{QP}=\sqrt{10}$,$\mathrm{PR}=\sqrt{5}$,$\mathrm{RT}^\prime=1$,$\mathrm{T}^\prime \mathrm{Q}=\sqrt{2}$のとき,$\angle \mathrm{QPR}$の大きさを求めよ.さらに,四角形$\mathrm{PQT}^\prime \mathrm{R}$の面積を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
$\mathrm{M}$社はブドウを栽培し,それを原料にしたワインを醸造して世界中に販売している,としよう.一般には,企業の業績には,社内のさまざまな活動だけでなく,社外の要因も大きくかかわっている.しかしながら,ここでは,問題が複雑にならないように,一部の活動に限定して,$\mathrm{M}$社の醸造計画を考えてみよう.

栽培および醸造において,量と質には,醸造量が増えれば増えるほどワインの品質が低下する,という関係があると仮定する.この関係は,
\[ q=a-bx \]
という単純な式で表されるとする.ここで,$x$はワインの醸造量(リットル),$q$はワインの品質の高さを表す$\mathrm{M}$社が独自に定めた指標とし,$a$と$b$は正の実数とする.また,変数$x$のとり得る値の範囲は,$x$と$q$がともに正の値となる範囲とする.
醸造されるワインはすべて同一の品質で,同一の価格で販売されるものとし,その価格を$p$(円/リットル)で表す.市場において,品質の高いワインは希少性が増すため,その価格は非常に高いものになる.この関係は,
\[ p=cq^2 \]
で表されると仮定する.ただし,$c$は正の実数とする.また,醸造されたワインは,上記で定まる価格で,すべて残らずに販売されてしまうものとする.
$\mathrm{M}$社は,以上の諸条件を前提にして,その年の栽培および醸造を行う.すなわち,醸造量を$x$と決め,それに応じて適切な栽培および醸造を行うことにより,品質の指標が$q$となるワインを作り,その全量(すなわち$x$)を品質の指標$q$に応じた価格$p$で販売し,売上高$y=px$(円)を得る.

(1)売上高は,
\[ x=\frac{[$69$]}{[$70$]} \cdot \frac{a}{b} \ \text{(リットル)} \]
のとき,最大値
\[ \frac{[$71$]}{[$72$][$73$]} \cdot \frac{ca \!\!\! \raisebox{3mm}[5mm][1mm]{\mkakko{$74$}}}{b} \ \text{(円)} \]
をとる.
(2)次に,ワインを醸造するに際し,技術上の制約や販売上の都合などの理由で,醸造量の下限が設けられているとしよう.この下限を正の実数$m$(リットル)で表す.$x$の取り得る値の範囲には,$x$が$m$以上という条件が追加されることになる.このときの売上高の最大値を$\overline{y}$で表し,それを与える醸造量を$\overline{x}$で表す.$\overline{x}$は$m$の関数であるので,これを$\overline{x}=f(m)$で表す.関数$f(m)$の定義域を$\displaystyle 0<m<\frac{a}{b}$として,この関数のグラフを描きなさい.
同様に,$\overline{y}$も$m$の関数であるので,これを$\overline{y}=g(m)$で表す.関数$g(m)$の定義域を$\displaystyle 0<m<\frac{a}{b}$として,この関数のグラフを描きなさい.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
実数$\theta$は$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$を満たすとする.$\mathrm{O}(0,\ 0,\ 0)$を原点とする座標空間の$3$点
\[ \mathrm{A}(\cos^2 \theta,\ \sin \theta,\ 1+\sin^2 \theta),\quad \mathrm{B}(\sin \theta,\ 0,\ -\sin \theta),\quad \mathrm{C}(1,\ \cos 2\theta-\cos^2 \theta,\ 1) \]
に対し,それぞれ$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおく.

(1)$\overrightarrow{b}$は零ベクトルではないとする.$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が同一平面上にあるならば,

$\displaystyle \theta=\frac{[$27$][$28$]}{[$29$]} \pi$である.

次に$\displaystyle \theta=\frac{\pi}{6}$とし,以下このときの$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を考える.また,$3$点$\mathrm{O}$,$\mathrm{B}$,$\mathrm{C}$の定める平面を$\alpha$とする.
(2)点$\mathrm{P}$は$\alpha$上の点で,$|\overrightarrow{\mathrm{AP}}|$が最小になるものとする.このとき,
\[ \overrightarrow{\mathrm{AP}} \cdot \overrightarrow{b}=[$30$],\quad \overrightarrow{\mathrm{AP}} \cdot \overrightarrow{c}=[$31$] \]
が成り立つ.また,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表すと
\[ \overrightarrow{\mathrm{OP}}=\frac{[$32$][$33$]}{[$34$]} \overrightarrow{b}+\frac{[$35$][$36$]}{[$37$][$38$]} \overrightarrow{c} \]
となる.ただし,$\overrightarrow{u},\ \overrightarrow{v}$はベクトル$\overrightarrow{u}$と$\overrightarrow{v}$の内積を表す.

(3)三角形$\mathrm{OBC}$の面積は$\displaystyle \frac{1}{8} \sqrt{\frac{[$39$][$40$]}{[$41$]}}$であり,$|\overrightarrow{\mathrm{AP}}|=\displaystyle \sqrt{\frac{[$42$]}{[$43$][$44$]}}$なので,四面体$\mathrm{OABC}$の体積は$\displaystyle \frac{[$45$]}{[$46$]}$となる.
立教大学 私立 立教大学 2015年 第1問
次の空欄$[ア]$~$[コ]$に当てはまる数または式を記入せよ.

(1)$2$つの自然数$p,\ q$が$p^2+pq+q^2=19$を満たすとき,$p+q=[ア]$である.
(2)$0 \leqq \theta<2\pi$のとき,$\sin^2 \theta+\cos \theta-1$の最大値は$[イ]$であり,最小値は$[ウ]$である.
(3)$\displaystyle S=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+\cdots +\frac{1}{\sqrt{45}+\sqrt{49}}$とすると,$S$の値は$[エ]$である.
(4)方程式$\log_{\sqrt{2}}(2-x)+\log_2 (x+1)=1$の解をすべて求めると,$x=[オ]$である.
(5)等式$\displaystyle f(x)=x^2+3 \int_0^1 f(t) \, dt$を満たす関数は,$f(x)=[カ]$である.
(6)座標空間における$4$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 3)$,$\mathrm{D}(x,\ 4,\ 5)$が同一平面上にあるとき,$x=[キ]$である.
(7)$3$次方程式$x^3-x^2+ax+b=0$の解の$1$つが$1+i$のとき,$a=[ク]$,$b=[ケ]$である.ただし,$a,\ b$は実数とし,$i$は虚数単位とする.
(8)三角形$\mathrm{ABC}$の辺の長さが$\mathrm{AB}=4$,$\mathrm{BC}=5$,$\mathrm{CA}=6$のとき,三角形$\mathrm{ABC}$の面積は$[コ]$である.
早稲田大学 私立 早稲田大学 2015年 第5問
曲線$C:y=x^3$上に,次のようにして点$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\cdots$,$\mathrm{P}_n$,$\cdots$をとる.

(i) $\mathrm{P}_1$は$C$上の与えられた点とする.
(ii) $\mathrm{P}_n$を通り,$\mathrm{P}_n$とは異なる点で$C$と接する直線が$1$つだけ存在するとき,その直線を$\ell_n$とし,$\ell_n$と$C$との接点を$\mathrm{P}_{n+1}$とする.もしこのような直線$\ell_n$が存在しない場合には$\mathrm{P}_{n+1}$は$\mathrm{P}_n$と同一の点とする.

点$\mathrm{P}_n$の$x$座標を$x_n$とするとき,次の問に答えよ.


(1)直線$\ell_n$が存在する場合$\displaystyle x_{n+1}=\frac{[ト]}{[ナ]}x_n$である.

(2)$\mathrm{P}_1$を原点とするとき$\displaystyle \lim_{n \to \infty}x_n=[ニ]$である.
(3)$\mathrm{P}_1$を点$(2,\ 8)$とするとき$\displaystyle \lim_{n \to \infty}x_n=[ヌ]$である.
岐阜薬科大学 公立 岐阜薬科大学 2015年 第1問
$2$点$\mathrm{A}(x,\ y)$,$\mathrm{B}(X,\ Y)$が原点$\mathrm{O}$を通る同一直線上にある.$\mathrm{OA} \cdot \mathrm{OB}=4$を満たし,$\mathrm{A}$と$\mathrm{B}$は原点$\mathrm{O}$に対し反対側にある.次の問いに答えよ.

(1)点$\mathrm{A}(x,\ y)$を$X$と$Y$を用いて表せ.
(2)点$\mathrm{A}$が直線$y=-2x-2$上を動くとき,

(i) 点$\mathrm{B}$の軌跡,
(ii) $\displaystyle\frac{\mathrm{OB}}{\mathrm{AB}}$が最大となる点$\mathrm{A}$および点$\mathrm{B}$の座標

を求めよ.
東京大学 国立 東京大学 2014年 第1問
$1$辺の長さが$1$の正方形を底面とする四角柱$\mathrm{OABC}$-$\mathrm{DEFG}$を考える.$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を,それぞれ辺$\mathrm{AE}$,辺$\mathrm{BF}$,辺$\mathrm{CG}$上に,$4$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$が同一平面上にあるようにとる.四角形$\mathrm{OPQR}$の面積を$S$とおく.また,$\angle \mathrm{AOP}$を$\alpha$,$\angle \mathrm{COR}$を$\beta$とおく.

(1)$S$を$\tan \alpha$と$\tan \beta$を用いて表せ.

(2)$\displaystyle \alpha+\beta=\frac{\pi}{4},\ S=\frac{7}{6}$であるとき,$\tan \alpha+\tan \beta$の値を求めよ.さらに,$\alpha \leqq \beta$のとき,$\tan \alpha$の値を求めよ.
(図は省略)
千葉大学 国立 千葉大学 2014年 第3問
座標平面上に,円$C:(x-1)^2+(y-1)^2=1$と点$\mathrm{Q}(1,\ 2)$がある.点$\mathrm{P}_1$の座標を$(3,\ 0)$とし,$x$軸上の点$\mathrm{P}_2,\ \mathrm{P}_3,\ \cdots$を以下の条件によって決め,$\mathrm{P}_n$の座標を$(p_n,\ 0)$とする.

点$\mathrm{P}_n$から円$C$に接線を引き,その$y$座標が正である接点を$\mathrm{T}_n$とする.このとき,$3$点$\mathrm{Q}$,$\mathrm{T}_n$,$\mathrm{P}_{n+1}$は同一直線上にある.($n=1,\ 2,\ \cdots$)

このとき,以下の問いに答えよ.

(1)点$\mathrm{T}_1$の座標を求めよ.
(2)点$\mathrm{P}_2$の座標を求めよ.
(3)点$\mathrm{T}_n$の座標を$p_n$の式で表せ.
(4)点$\mathrm{P}_n$の座標を$n$の式で表せ.
筑波大学 国立 筑波大学 2014年 第6問
$xy$平面上に楕円
\[ C_1:\frac{x^2}{a^2}+\frac{y^2}{9}=1 \quad (a>\sqrt{13}) \]
および双曲線
\[ C_2:\frac{x^2}{4}-\frac{y^2}{b^2}=1 \quad (b>0) \]
があり,$C_1$と$C_2$は同一の焦点をもつとする.また$C_1$と$C_2$の交点
\[ \mathrm{P} \left( 2 \sqrt{1+\frac{t^2}{b^2}},\ t \right) \quad (t>0) \]
における$C_1$,$C_2$の接線をそれぞれ$\ell_1$,$\ell_2$とする.

(1)$a$と$b$の間に成り立つ関係式を求め,点$\mathrm{P}$の座標を$a$を用いて表せ.
(2)$\ell_1$と$\ell_2$が直交することを示せ.
(3)$a$が$a>\sqrt{13}$を満たしながら動くときの点$\mathrm{P}$の軌跡を図示せよ.
岩手大学 国立 岩手大学 2014年 第3問
座標平面上に点$\mathrm{A}(\pi,\ 1)$がある.また,関数$y=\cos x$のグラフ上に点$\mathrm{P}$をとり,$\mathrm{A}$と$\mathrm{P}$との中点を$\mathrm{Q}$とする.以下の問いに答えよ.

(1)$\mathrm{P}$の座標を$(t,\ \cos t)$とするとき,$\mathrm{Q}$の座標を$t$を用いて表せ.
(2)$\mathrm{Q}$の座標を$(x,\ y)$とするとき,$y$を$x$の関数として表せ.また,$y$の最大値と最小値を求めよ.
(3)$(2)$で求めた関数を$f(x)$とする.$2$つの関数$y=\cos x$と$y=f(x)$のグラフを同一の座標平面上に描け.ただし,どちらも$0 \leqq x \leqq 2\pi$の範囲で描け.
(4)$(2)$で求めた関数を$f(x)$とする.$2$つの関数$y=\cos x$と$y=f(x)$のグラフの交点について,その$y$座標の取り得る値をすべて求めよ.ただし,$x$の範囲はすべての実数とする.
スポンサーリンク

「同一」とは・・・

 まだこのタグの説明は執筆されていません。