タグ「同一」の検索結果

10ページ目:全106問中91問~100問を表示)
岩手大学 国立 岩手大学 2010年 第4問
$2$つずつ平行な$3$組の平面で囲まれた立体を平行六面体という.下図のような平行六面体$\mathrm{OADB}$-$\mathrm{CQRS}$において,$\triangle \mathrm{ABC}$の重心を$\mathrm{F}$,$\triangle \mathrm{DQS}$の重心を$\mathrm{G}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.このとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$で表せ.
(2)$4$点$\mathrm{O},\ \mathrm{F},\ \mathrm{G},\ \mathrm{R}$は同一直線上にあることを示せ.

(図は省略)
和歌山大学 国立 和歌山大学 2010年 第3問
正三角形OABにおいて,辺AB,AOを$1:3$に内分する点をそれぞれP,Qとし,辺ABの中点をRとする.直線PQ上の点Sを$\text{OB} \perp \text{OS}$となるように定める.また,直線BQ上の点Tを$\text{OT} \perp \text{BQ}$となるように定める.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OT}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)3点R,S,Tが同一直線上にあることを示せ.
和歌山大学 国立 和歌山大学 2010年 第3問
正三角形OABにおいて,辺AB,AOを$1:3$に内分する点をそれぞれP,Qとし,辺ABの中点をRとする.直線PQ上の点Sを$\text{OB} \perp \text{OS}$となるように定める.また,直線BQ上の点Tを$\text{OT} \perp \text{BQ}$となるように定める.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OT}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)3点R,S,Tが同一直線上にあることを示せ.
高知大学 国立 高知大学 2010年 第3問
関数$f(x)$の導関数$f^{\, \prime}(x)$は$f^{\, \prime}(x)=x^2-1$を満たし,さらに$f(3)=6$であるとする.このとき,次の問いに答えよ.

(1)$f(x)$を求めよ.
(2)$f(x)$の極大値と極小値を求めよ.
(3)曲線$y=f(x)$と直線$y=kx$が接するときの$k$の値を求めよ.
(4)$\displaystyle g(x)=\frac{2}{9}x^3+\frac{2}{3}x^2-2x$とする.このとき,$y=f(x)$と$y=g(x)$のグラフを同一座標平面上に図示せよ.また,それらの共有点の座標を求めよ.
福井大学 国立 福井大学 2010年 第1問
空間内に4点O,A,B,Cがあり,$\text{OA}=\text{OB}=\sqrt{5},\ \text{OC}=1$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくと,$\overrightarrow{a} \cdot \overrightarrow{b}=4,\ \overrightarrow{b} \cdot \overrightarrow{c}=1$が成り立っている.2点A,Cから直線OBにそれぞれ垂線を下ろし,直線OBとの交点をD,Eとする.このとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{DA}},\ \overrightarrow{\mathrm{EC}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{c}$のとりうる値の範囲を求めよ.
(3)4点O,A,B,Cが同一平面上にない場合,四面体OABCの体積が最大になるときの$\overrightarrow{a} \cdot \overrightarrow{c}$の値と体積の最大値を求めよ.
佐賀大学 国立 佐賀大学 2010年 第4問
空間に定点A$(-4,\ 0,\ 4\sqrt{3})$と動点P$(-t,\ t-2,\ 2\sqrt{3})$,Q$(t,\ t^2+t-3,\ 0)$がある.原点をOとするとき,次の問いに答えよ.

(1)$t=0$のとき,$\angle \text{POQ}$の大きさを求めよ.
(2)$|\overrightarrow{\mathrm{OP}}|$の最小値と,そのときの$t$の値を求めよ.
(3)4点O,A,P,Qが同一平面上にあるときの$t$の値をすべて求めよ.
佐賀大学 国立 佐賀大学 2010年 第1問
空間に定点A$(-4,\ 0,\ 4\sqrt{3})$と動点P$(-t,\ t-2,\ 2\sqrt{3})$,Q$(t,\ t^2+t-3,\ 0)$がある.原点をOとするとき,次の問いに答えよ.

(1)$t=0$のとき,$\angle \text{POQ}$の大きさを求めよ.
(2)$|\overrightarrow{\mathrm{OP}}|$の最小値と,そのときの$t$の値を求めよ.
(3)4点O,A,P,Qが同一平面上にあるときの$t$の値をすべて求めよ.
新潟大学 国立 新潟大学 2010年 第5問
座標平面上の4点をA$(1,\ 1)$,B$(1,\ 2)$,C$(2,\ 2)$,D$(2,\ 1)$とする.点Aに駒をおき,1個のさいころを投げて,出た目の数だけこれらの点の上を時計回りに駒を進める試行を考える.たとえば,出た目が5のとき,駒はA→B→C→D→A→Bと進みBに止まる.1回目の試行で止まる点をPとし,駒を点Aに戻し,2回目の試行で止まる点をQとする.このとき,次の問いに答えよ.ただし,Oは原点を表す.

(1)O,P,Qが同一直線上にある確率を求めよ.
(2)O,P,Qを通る2次関数$y=f(x)$のグラフがただ一通りに定まるとき,P,Qの位置およびその2次関数をすべて求めよ.
(3)(2)で2次関数がただ一通りに定まるとき,その2次関数の最大値を$X$とし,そうでないとき$X=0$とする.このとき,$X$の期待値を求めよ.
新潟大学 国立 新潟大学 2010年 第4問
座標平面上の4点をA$(1,\ 1)$,B$(1,\ 2)$,C$(2,\ 2)$,D$(2,\ 1)$とする.点Aに駒をおき,1個のさいころを投げて,出た目の数だけこれらの点の上を時計回りに駒を進める試行を考える.たとえば,出た目が5のとき,駒はA→B→C→D→A→Bと進みBに止まる.1回目の試行で止まる点をPとし,駒を点Aに戻し,2回目の試行で止まる点をQとする.このとき,次の問いに答えよ.ただし,Oは原点を表す.

(1)O,P,Qが同一直線上にある確率を求めよ.
(2)O,P,Qを通る2次関数$y=f(x)$のグラフがただ一通りに定まるとき,P,Qの位置およびその2次関数をすべて求めよ.
(3)O,P,Qが同一直線上にあるとき$X=1$,また,O,P,Qを通る2次関数$y=f(x)$のグラフがただ一通りに定まるとき$X=2$,そのどちらでもないとき$X=0$とする.このとき,$X$の期待値を求めよ.
室蘭工業大学 国立 室蘭工業大学 2010年 第4問
$s,\ t$を正の実数とする.平面上の3点A,B,Cは同一線上にないものとし,さらに平面上の2点P,Qを$\displaystyle \overrightarrow{\mathrm{AP}}=s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}},\ \overrightarrow{\mathrm{BQ}}=\frac{t}{s+t} \overrightarrow{\mathrm{BC}}$で定める.

(1)$\overrightarrow{\mathrm{AQ}}$を$s,\ t,\ \overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AC}}$を用いて表せ.
(2)$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$のなす角が$60^\circ$で$|\overrightarrow{\mathrm{AC}}|=2 |\overrightarrow{\mathrm{AB}}|$であるとする.$\overrightarrow{\mathrm{AP}} \perp \overrightarrow{\mathrm{CP}}$かつ$|\overrightarrow{\mathrm{AP}}|=5t |\overrightarrow{\mathrm{AQ}}|$であるとき,$s,\ t$の値を求めよ.
スポンサーリンク

「同一」とは・・・

 まだこのタグの説明は執筆されていません。