タグ「合計」の検索結果

3ページ目:全120問中21問~30問を表示)
早稲田大学 私立 早稲田大学 2015年 第6問
$2$つの箱$\mathrm{A}$と$\mathrm{B}$に,自然数が$1$つ記されたカードが何枚かずつ入っている.箱$\mathrm{A}$,$\mathrm{B}$からカードを$1$枚ずつ,合計$2$枚のカードを取り出す試行を行う.自然数$n$に対し,取り出された$2$枚のカードに記された自然数の和が$n$である確率を$P_n$とする.

(1)箱$\mathrm{A}$に数字$2,\ 3$が記されたカードがそれぞれ$1$枚ずつ,箱$\mathrm{B}$に数字$1,\ 2,\ 3$が記されたカードがそれぞれ$1$枚ずつ入っているとき,$\displaystyle P_4=\frac{[ネ]}{[ノ]}$である.また,取り出された$2$枚のカードに記された$2$つの自然数の和の期待値は$\displaystyle \frac{[ハ]}{[ヒ]}$である.
(2)箱$\mathrm{A}$にカードが$3$枚,箱$\mathrm{B}$にカードが$5$枚入っていて,
\[ P_2=\frac{1}{15},\quad P_3=\frac{1}{5},\quad P_4=\frac{1}{3},\quad P_5=\frac{2}{5} \]
が成立している.このとき,箱$\mathrm{B}$に入っているカードのうち,最も枚数が多いのは$[フ]$という数字が記されたカードであり,その枚数は$[ヘ]$枚である.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
銀行口座(以降,口座)から$\mathrm{IC}$カードに金額を移転し,そのカードを用いて支払いをおこなうものとする.口座からカードに移転した金額を超過してさらに支払う必要が生じた場合,その分は銀行が自動的に立て替えて払うものとする.

このとき,口座からカードに金額を移転することに伴う利子収入の減少分,および銀行からの借入れに伴う利払い,そして口座からカードへの移転に伴う手数料,それらの合計$Z$を最小にする問題を考える.適当な仮定のもと,$Z$は独立変数$x,\ y$の関数として,つぎのように表わされる.
\[ Z=\frac{xy^2}{40A}+\frac{A^2-2xyA+x^2y^2}{30xA}+6x \]
ただし$(x,\ y)$は座標平面の第$1$象限の点であり,$A$は定数である.

(1)$x$を固定し,$Z$を$y$の関数と考えれば,その最小値は
\[ y=\frac{[$35$][$36$]}{[$37$][$38$]} \frac{A}{x} \]
のときである.
(2)$Z$に$(1)$の結果を代入し,$Z$を$x$のみの関数とみれば
\[ x=\sqrt{\frac{[$39$][$40$][$41$]}{[$42$][$43$][$44$]}A} \]
のとき$Z$は最小になる.
(3)以上から$Z$の最小値は
\[ \sqrt{\frac{[$45$][$46$][$47$]}{[$48$][$49$][$50$]}A} \]
である.
上智大学 私立 上智大学 2015年 第2問
次の問いに答えよ.

(1)不定方程式$41x+355y=1$について,$x$が$0<x<100$を満たす整数解は,$x=[ス]$,$y=[セ]$である.
(2)$25 \, \mathrm{g}$までの普通郵便と,簡易書留をそれぞれ何通かずつ出したところ,料金の合計はちょうど$5000$円となった.なお,$1$通あたりの郵便料金は,普通郵便が$82$円,簡易書留が$710$円である.このとき,普通郵便は$[ソ]$通,簡易書留は$[タ]$通である.
(3)$82$円および$205$円の$2$種類の切手を組み合わせて支払える$6100$円以上$6110$円未満の金額の一の位の数は,$[チ]$であり,そのような組合せは$[ツ]$通りある.
この組合せのうち,$2$種類の切手の合計枚数が最小になるのは$82$円切手が$[テ]$枚,$205$円切手が$[ト]$枚のときである.また,$2$種類の切手の枚数の差が最小になるのは$82$円切手が$[ナ]$枚,$205$円切手が$[ニ]$枚のときである.
東京理科大学 私立 東京理科大学 2015年 第3問
座標平面上に$\mathrm{A}(3,\ 2)$,$\mathrm{B}(8,\ 2)$,$\mathrm{C}(6,\ 6)$,$\mathrm{D}(3,\ 6)$を頂点とする四角形$\mathrm{ABCD}$と点$\mathrm{P}$がある.$\mathrm{P}$と四角形$\mathrm{ABCD}$の周上の点(頂点を含む)との距離の最小値を$d$とする.

(1)$\mathrm{P}$の座標が$(2,\ 1)$,$\mathrm{P}$の座標が$(2,\ 8)$,$\mathrm{P}$の座標が$(6,\ 4)$のとき,$d$はそれぞれ
\[ \sqrt{[ア]},\quad \sqrt{[イ]},\quad \frac{[ウ]}{[エ]} \sqrt{[オ]} \]
である.
(2)$1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8$のそれぞれの数字が書かれたカードが$1$枚ずつ,合計$8$枚ある.これらの$8$枚のカードをよく混ぜてから,カードを$1$枚取り出す.このカードを元に戻さないで,もう$1$枚カードを取り出す.$1$回目に取り出したカードの数字を$x$,$2$回目に取り出したカードの数字を$y$として,座標が$(x,\ y)$である点を$\mathrm{P}$とする.

(i) $d=0$,$d=1$,$d=2$となる確率は,それぞれ
\[ \frac{[カ]}{[キ][ク]},\quad \frac{[ケ]}{[コ][サ]},\quad \frac{[シ]}{[ス][セ]} \]
である.
また,$d$が無理数となる確率は,$\displaystyle \frac{[ソ][タ]}{[チ][ツ]}$である.
(ii) $d$の期待値は,
\[ \frac{[テ]}{[ト][ナ]}+\frac{[ニ]}{[ヌ][ネ]} \sqrt{[ノ]}+\frac{[ハ][ヒ]}{[フ][ヘ][ホ]} \sqrt{[マ]} \]
である.
獨協医科大学 私立 獨協医科大学 2015年 第2問
正$n$角形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \cdots \mathrm{P}_n$($n$は$4$以上の整数)を$K$とする.$K$の頂点と各辺の中点の合計$2n$個の点から異なる$3$点を選び,それらを線分で結んでできる図形を$T$とする.(ただし,$K$の$1$つの頂点とそれに隣接する中点の一方を結ぶ線分を$1$辺とする三角形,例えば辺$\mathrm{P}_1 \mathrm{P}_2$の中点を$\mathrm{M}_1$として,三角形$\mathrm{P}_1 \mathrm{M}_1 \mathrm{P}_3$なども「$K$と辺を共有する三角形」とする.)

(1)$n=5$とする.
$T$が三角形となる確率は$\displaystyle \frac{[アイ]}{[ウエ]}$である.
$T$が二等辺三角形となる確率は$\displaystyle \frac{[オ]}{[カキ]}$である.
$T$が$K$と辺を共有しない三角形となる確率は$\displaystyle \frac{[ク]}{[ケ]}$である.
(2)$T$が三角形となる確率は
\[ \frac{[コ]n^2-[サ]n-[シ]}{[ス]([セ]n-[ソ])(n-[タ])} \]
である.
$T$が$K$と辺を共有しない三角形となる確率は
\[ \frac{[チ]n^2-[ツテ]n+[トナ]}{([セ]n-[ソ])(n-[タ])} \]
である.
広島経済大学 私立 広島経済大学 2015年 第2問
白玉が$2$個,赤玉が$4$個,青玉が$6$個の合計$12$個の入った袋から$3$個の玉を同時に取り出す.このとき,次の各問の空欄に当てはまる最も適切な数値を記入せよ.


(1)$3$個の玉すべてが同じ色になる確率は$\displaystyle \frac{[$10$]}{[$11$]}$である.

(2)$3$個の玉が$3$種類の色からなる確率は$\displaystyle \frac{[$12$]}{[$13$]}$である.

(3)赤玉が$2$個,青玉が$1$個である確率は$\displaystyle \frac{[$14$]}{[$15$]}$である.

(4)少なくとも$1$個は赤玉である確率は$\displaystyle \frac{[$16$]}{[$17$]}$である.
西南学院大学 私立 西南学院大学 2015年 第1問
男子$4$人,女子$4$人の合計$8$人のメンバーがいる.以下の問に答えよ.

(1)$8$人を同性$2$人から成る$4$つのグループに分け,さらにこのグループを,先頭から男子グループ,女子グループ,男子グループ,女子グループの順に並べる方法は全部で$[アイ]$通りある.
(2)くじ引きで,男女ペアから成る$4$つのグループを作る.このときメンバーの$1$人である自分が,ある特定の異性と同じグループになる確率は$\displaystyle \frac{[ウ]}{[エ]}$である.
(3)くじ引きで,$2$人ずつ$4$つのグループを作る.このとき同性同士のグループが少なくとも$1$つできる確率は$\displaystyle \frac{[オカ]}{[キク]}$である.
沖縄国際大学 私立 沖縄国際大学 2015年 第5問
以下の各問いに答えなさい.

(1)底面の直径が$6$,高さが$9$の直円錐がある.直円錐の内側に球を配置した.直円錐の底面と側面に球が接しているとき,この内接球の半径$r$を求めよ.
(2)線分$\mathrm{AB}$上に円$\mathrm{O}_1$と円$\mathrm{O}_2$が接しており,かつ,円$\mathrm{O}_1$と円$\mathrm{O}_2$は外接している.線分$\mathrm{AB}$と円$\mathrm{O}_1$の接点を$\mathrm{P}$,線分$\mathrm{AB}$と円$\mathrm{O}_2$の接点を$\mathrm{Q}$とする.このとき,円$\mathrm{O}_1$の半径を$7$,$\mathrm{PQ}=2 \sqrt{7}$における円$\mathrm{O}_2$の半径$r$を求めよ.ただし,円$\mathrm{O}_2$の半径は円$\mathrm{O}_1$より小さいとする.
(3)三階建ての建物がある.図のように$3$階を$\mathrm{AB}$,$2$階を$\mathrm{CD}$,$1$階を$\mathrm{EF}$としたとき,$3$階から$1$階の通路を$\mathrm{AP}$,$1$階から$2$階の通路を$\mathrm{PD}$とする.このとき,点$\mathrm{P}$を$\mathrm{EF}$上で動かしたとき,$\mathrm{AP}$と$\mathrm{PD}$の通路の長さの合計が最も短くなるときの値($\mathrm{AP}+\mathrm{PD}$)を求めよ.ただし,$\mathrm{AB}=\mathrm{CD}=\mathrm{EF}=8$,$\mathrm{AC}=\mathrm{CE}=\mathrm{BD}=\mathrm{DF}=2$とする.
(図は省略)
大阪府立大学 公立 大阪府立大学 2015年 第1問
$n$を自然数とする.数字$1$が書かれたカードが$n$枚,数字$4$が書かれたカードが$1$枚,$\triangle$が書かれたカードが$1$枚,合計$n+2$枚のカードがある.これら$n+2$枚のカードから$2$枚のカードを同時に引き,カードに書かれた数字の合計を得点とするが,引いたカードの中に$\triangle$が書かれたカードが含まれる場合には,得点は$0$点とする.

(1)得点が$0$点となる確率,得点が$2$点となる確率,得点が$5$点となる確率をそれぞれ求めよ.
(2)得点の期待値を求めよ.
(3)$(2)$で求めた期待値を$a_n$とおくとき,$a_{n+1}-a_n$の符号を調べることにより,$a_n$が最大になる$n$をすべて求めよ.
大阪府立大学 公立 大阪府立大学 2015年 第1問
$n$を自然数とする.数字$1$が書かれたカードが$n$枚,数字$4$が書かれたカードが$1$枚,$\triangle$が書かれたカードが$1$枚,合計$n+2$枚のカードがある.これら$n+2$枚のカードから$2$枚のカードを同時に引き,カードに書かれた数字の合計を得点とするが,引いたカードの中に$\triangle$が書かれたカードが含まれる場合には,得点は$0$点とする.

(1)得点が$0$点となる確率,得点が$2$点となる確率,得点が$5$点となる確率をそれぞれ求めよ.
(2)得点の期待値を求めよ.
(3)$(2)$で求めた期待値を$a_n$とおくとき,$a_{n+1}-a_n$の符号を調べることにより,$a_n$が最大になる$n$をすべて求めよ.
スポンサーリンク

「合計」とは・・・

 まだこのタグの説明は執筆されていません。