タグ「合計」の検索結果

2ページ目:全120問中11問~20問を表示)
京都薬科大学 私立 京都薬科大学 2016年 第4問
次の$[ ]$にあてはまる数または式を記入せよ.

(1)$1$から$6$までの数字が$1$つずつ書かれた赤球が$6$個入った袋$\mathrm{A}$と,$1$から$6$までの数字が$1$つずつ書かれた白球が$6$個入った袋$\mathrm{B}$がある.それぞれの袋から無作為に$1$個ずつ球を取り出し,それらの球に書かれた数の合計が$k$となる場合の数を$f(k)$で表す.このとき,$xy$平面上の点$(k,\ f(k))$は,直線$x=[ア]$に関して対称な$2$直線上に並び,これらの対称な$2$直線と$x$軸で囲まれた部分の面積は$[イ]$である.
(2)$N$を$2$以上の整数とする.$1$から$N$までの数字が$1$つずつ書かれた赤球が$N$個入った袋$\mathrm{A}$と,$1$から$N$までの数字が$1$つずつ書かれた白球が$N$個入った袋$\mathrm{B}$がある.それぞれの袋から無作為に$1$個ずつ球を取り出し,それらの球に書かれた数の合計が$l$となる場合の数を$g(l)$で表す.このとき,$xy$平面上の点$(l,\ g(l))$は,直線$x=[ウ]$に関して対称な$2$直線上に並び,これらの対称な$2$直線と$x$軸で囲まれた部分の面積は$[エ]$である.
(3)$N$を$2$以上の整数とする.$1$から$N$までの数字が$1$つずつ書かれた赤球が$N$個と,$1$から$N$までの数字が$1$つずつ書かれた白球が$N$個入った袋$\mathrm{A}$と,$1$から$2N$までの数字が$1$つずつ書かれた青球が$2N$個入った袋$\mathrm{B}$がある.それぞれの袋から無作為に$1$個ずつ球を取り出し,それらの球に書かれた数の合計が$m$となる場合の数を$h(m)$で表す.このとき,$xy$平面上の点$(m,\ h(m))$が並ぶ直線の方程式は以下のようになる.


\qquad \; \!\!$2 \leqq m \leqq [オ]$の$(m,\ h(m))$について,$y=[カ]$
$[オ] \leqq m \leqq [キ]$の$(m,\ h(m))$について,$y=[ク]$
$[キ] \leqq m \leqq [ケ]$の$(m,\ h(m))$について,$y=[コ]$


これらの$3$直線と$x$軸で囲まれた部分の面積は$[サ]$である.
明治大学 私立 明治大学 2016年 第3問
$n$と$k$を$n>k$を満たす自然数とする.$n$チームが参加するサッカーの大会がある.この大会では,全てのチームが$k$回の試合を行う.但し,その$k$試合の対戦相手は,全て異なるとする.このとき,次の問に答えよ.

(1)$n=4,\ k=2$の場合の大会が,何通りあるかもとめよ.
(2)$n=6,\ k=3$のとき,$1$つの大会の試合の総数をもとめよ.
(3)一般に,この大会が成立するためには,$n$か$k$のどちらかが,偶数でなければならないことを示せ.
(4)各試合の両チームの得点を全て合計し,試合数で割った値を,その大会における$1$試合の平均得点と呼ぶことにする.
$n=9$のとき,各チームが$k$試合行う大会における,$1$試合の平均得点が,$\displaystyle \left( \frac{1}{27}k^2-\frac{7}{9}k+5 \right)$点であったとする.$1$つの大会における総得点が,もっとも多くなる$k$をもとめよ.
獨協医科大学 私立 獨協医科大学 2016年 第2問
袋の中に,$1,\ 2,\ \cdots,\ m$($m$は$2$以上の整数)の数字が書かれた球がそれぞれ$n$個ずつ($n$は正の整数),合計$mn$個入っている.この袋の中から同時に$2$個の球を取り出す.取り出した球に書かれている数字が$k,\ l (k \geqq l)$のとき,$x=k$,$y=l$とする.

(1)$m=6,\ n=3$のとき,$x-y=3$となる確率は$\displaystyle \frac{[ア]}{[イウ]}$である.
(2)$2(x-y) \geqq m$となる確率を$p$とする.


$m=18$,$n=3$のとき,$\displaystyle p=\frac{[エオ]}{[カキ]}$である.

$m$が偶数,$n=3$のとき,$\displaystyle p=\frac{[ク]m+[ケ]}{[コサ]m-[シ]}$である.


(3)$2(x-y)<m$となる確率は,$m$が偶数のとき
\[ \frac{[ス]mn-[セ]n-[ソ]}{[タ](mn-[チ])} \]
である.
広島女学院大学 私立 広島女学院大学 2016年 第3問
下の表は,ある高校の生徒$30$人の$2$つの科目$x$と$y$のテスト(点)の得点をまとめたものである.数値は,四捨五入していない正確な値とし,次の問いに答えよ.ただし,$\overline{x}$,$\overline{y}$はそれぞれ科目$x$,$y$の平均を意味し,$\sqrt{1.64}=1.28$,$\sqrt{2.73}=1.65$とする.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
番号 & $x$ & $y$ & $x-\overline{x}$ & $(x-\overline{x})^2$ & $y-\overline{y}$ & $(y-\overline{y})^2$ & $(x-\overline{x})(y-\overline{y})$ \\ \hline
$1$ & $38$ & $39$ & $-23$ & $529$ & $-29$ & $841$ & $667$ \\ \hline
$2$ & $40$ & $50$ & $-21$ & $441$ & $-18$ & $324$ & $378$ \\ \hline
$\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ \\ \hline
$29$ & $80$ & $90$ & $19$ & $361$ & $22$ & $484$ & $418$ \\ \hline
$30$ & $82$ & $96$ & $21$ & $441$ & $28$ & $784$ & $588$ \\ \hline
合計 & $1830$ & $[$12$]$ & $0$ & $4932$ & $0$ & $8190$ & $3181$ \\ \hline
平均値 & $61$ & $[$13$]$ & & & & & \\ \hline
中央値 & $60$ & $63$ & & & & & \\ \hline
\end{tabular}


(1)$[$12$]$,$[$13$]$の値を求めよ.
(2)科目$x,\ y$のそれぞれの分散${s_x}^2,\ {s_y}^2$を求めよ.小数点以下を四捨五入して整数値で求めよ.${s_x}^2=[$14$]$,${s_y}^2=[$15$]$
(3)科目$x,\ y$の共分散$s_{xy}$を求めよ.小数点以下を四捨五入して整数値で求めよ.$s_{xy}=[$16$]$
(4)科目$x$と$y$の相関係数$r$を求めよ.小数第$3$位を四捨五入して小数第$2$位まで求めよ.$r=[$17$]$
(5)科目$x$と$y$の散布図として適切なものを下の(ア),(イ),(ウ)の図から選べ.$[$18$]$
(図は省略)
和歌山大学 国立 和歌山大学 2015年 第1問
$n$を$1$以上の整数とする.袋の中に,$1$の数字を書いたカードが$1$枚,$2$の数字を書いたカードが$2$枚,$3$の数字を書いたカードが$3$枚入っている.この袋の中から,無作為にカードを$1$枚取り出して数字を記録し,もとに戻すという試行を繰り返す.次の問いに答えよ.

(1)この試行を$n$回繰り返したとき,記録された$n$個の数字すべての積を$R_n$とする.$R_n$が$3$で割り切れない確率と,$R_n$が$6$で割り切れる確率を$n$を用いて表せ.
(2)この試行を$n$回繰り返したとき,記録された$n$個の数字の合計を$S_n$とし,$S_n$が偶数である確率を$p_n$とする.$p_{n+1}$を$p_n$を用いて表し,数列$\{p_n\}$の一般項を求めよ.
和歌山大学 国立 和歌山大学 2015年 第1問
$n$を$1$以上の整数とする.袋の中に,$1$の数字を書いたカードが$1$枚,$2$の数字を書いたカードが$2$枚,$3$の数字を書いたカードが$3$枚入っている.この袋の中から,無作為にカードを$1$枚取り出して数字を記録し,もとに戻すという試行を繰り返す.次の問いに答えよ.

(1)この試行を$n$回繰り返したとき,記録された$n$個の数字すべての積を$R_n$とする.$R_n$が$3$で割り切れない確率と,$R_n$が$6$で割り切れる確率を$n$を用いて表せ.
(2)この試行を$n$回繰り返したとき,記録された$n$個の数字の合計を$S_n$とし,$S_n$が偶数である確率を$p_n$とする.$p_{n+1}$を$p_n$を用いて表し,数列$\{p_n\}$の一般項を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2015年 第1問
$n$を自然数,$m$を$2n$以下の自然数とする.$1$から$n$までの自然数が$1$つずつ記されたカードが,それぞれの数に対して$2$枚ずつ,合計$2n$枚ある.この中から,$m$枚のカードを無作為に選んだとき,それらに記された数がすべて異なる確率を$P_n(m)$と表す.ただし$P_n(1)=1$とする.さらに,
\[ E_n(m)=mP_n(m) \]
とおく.このとき以下の各問いに答えよ.

(1)$P_3(2),\ P_3(3),\ P_3(4)$を求めよ.
(2)$E_{10}(m)$が最大となるような$m$を求めよ.
(3)自然数$n$に対し,
\[ E_n(m)>E_n(m+1) \]
を満たす自然数$m$の最小値を$f(n)$とするとき,$f(n)$を$n$を用いて表せ.ただし,ガウス記号$[ \quad ]$を用いてよい.ここで,実数$x$に対して,$x$を超えない最大の整数を$[x]$と表す.
東京医科歯科大学 国立 東京医科歯科大学 2015年 第2問
$n$を自然数,$m$を$2n$以下の自然数とする.$1$から$n$までの自然数が$1$つずつ記されたカードが,それぞれの数に対して$2$枚ずつ,合計$2n$枚ある.この中から,$m$枚のカードを無作為に選んだとき,それらに記された数がすべて異なる確率を$P_n(m)$と表す.ただし$P_n(1)=1$とする.さらに,
\[ E_n(m)=mP_n(m) \]
とおく.このとき以下の各問いに答えよ.

(1)$P_3(2),\ P_3(3),\ P_3(4)$を求めよ.
(2)$E_{10}(3),\ E_{10}(4),\ E_{10}(5)$の中で最大のものはどれか.
(3)自然数$n$に対し,
\[ E_n(m)>E_n(m+1) \]
を満たす自然数$m$の最小値を$f(n)$とするとき,$f(n)$を$n$を用いて表せ.ただし,ガウス記号$[ \quad ]$を用いてよい.ここで,実数$x$に対して,$x$を超えない最大の整数を$[x]$と表す.
旭川大学 私立 旭川大学 2015年 第4問
ハートの$1$から$13$までの合計$13$枚のトランプがある.このトランプについて,次の確率を求めよ.

(1)ここから$1$枚抜くとき,$3$の倍数が出る確率.
(2)ここから$2$枚同時に抜くとき,$2$枚とも$3$の倍数である確率.
(3)ここから$2$枚同時に抜くとき,この$2$枚のうち$1$枚だけは$3$の倍数である確率.
(4)ここから$2$枚同時に抜くとき,この$2$枚のうち少なくとも$1$枚は$3$の倍数以外である確率.
広島文化学園大学 私立 広島文化学園大学 2015年 第2問
$10$点,$20$点,$30$点,$40$点,$50$点と書かれた$5$つの箱があり,それぞれに赤玉$2$つ,白玉$3$つが入っている.$1$つの箱から玉を取り出すとき,赤玉ならば箱に書かれた点数を得点とし,白玉ならば$0$点とする.$5$つの箱から$1$つずつ玉を取り出すとき,次の問いに答えよ.

(1)合計得点が$50$点になる取り出し方は何通りあるか.
(2)すべて同じ色の玉を取り出す確率を求めよ.
(3)合計得点が$30$点になる確率を求めよ.
スポンサーリンク

「合計」とは・・・

 まだこのタグの説明は執筆されていません。