タグ「合計」の検索結果

10ページ目:全120問中91問~100問を表示)
神戸大学 国立 神戸大学 2011年 第3問
袋の中に0から4までの数字のうち1つが書かれたカードが1枚ずつ合計5枚入っている.4つの数$0,\ 3,\ 6,\ 9$をマジックナンバーと呼ぶことにする.次のようなルールをもつ,1人で行うゲームを考える.\\
\quad ルール:袋から無作為に 1 枚ずつカードを取り出していく.ただし,一度取
り出したカードは袋に戻さないものとする.取り出したカードの数字の合計がマ
ジックナンバーになったとき,その時点で負けとし,それ以降はカードを取り出
さない.途中で負けとなることなく,すべてのカードを取り出せたとき,勝ちと
する.以下の問に答えよ.

(1)2枚のカードを取り出したところで負けとなる確率を求めよ.
(2)3枚のカードを取り出したところで負けとなる確率を求めよ.
(3)このゲームで勝つ確率を求めよ.
埼玉大学 国立 埼玉大学 2011年 第3問
ある袋に10と書かれた2枚のカードと 5と書かれた3枚のカードが入っている.この袋の中をよくかきまぜてから,カードを取り出す.以下の3つの方法で取り出した場合に,それぞれの期待値を求めなさい.

(1)この袋からカードを1枚取り出すとき,カードに書かれた数の期待値.
(2)この袋からカードを2枚取り出すとき,カードに書かれた数の合計の期待値.
(3)最初に,この袋からカードを2枚取り出す.2枚のカードに書かれた数が異なる場合には,次にそのまま続けて3枚目のカードを取り出す.一方,初めに取り出したカードに書かれた数が同じ場合には,そのうちの1枚のカードを袋に戻した後に,3枚目のカードを取り出すことにする.このとき,袋に戻したカードも含
めて,取り出した3枚のカードに書かれていた数の合計の期待値.
宮崎大学 国立 宮崎大学 2011年 第3問
100点と書かれたカード,50点と書かれたカード,10点と書かれたカードがそれぞれ2枚ずつ入った1つの袋の中から1枚ずつカードを取り出す.取り出したカードは袋の中にもどさないものとする.10点のカードが初めて取り出されたとき,このカードも含めて取り出されたカードの合計枚数を$k$とする.この$k$枚のカードの合計点を$S$とする.ただし,どのカードも取り出される確率は等しいものとする.このとき,次の各問に答えよ.

(1)$k=1,\ 2,\ 3,\ 4,\ 5$となるときの確率をそれぞれ求めよ.
(2)$S$の期待値を求めよ.
宮崎大学 国立 宮崎大学 2011年 第3問
100点と書かれたカード,50点と書かれたカード,10点と書かれたカードがそれぞれ2枚ずつ入った1つの袋の中から1枚ずつカードを取り出す.取り出したカードは袋の中にもどさないものとする.10点のカードが初めて取り出されたとき,このカードも含めて取り出されたカードの合計枚数を$k$とする.この$k$枚のカードの合計点を$S$とする.ただし,どのカードも取り出される確率は等しいものとする.このとき,次の各問に答えよ.

(1)$k=1,\ 2,\ 3,\ 4,\ 5$となるときの確率をそれぞれ求めよ.
(2)$S$の期待値を求めよ.
岩手大学 国立 岩手大学 2011年 第3問
次の文章について,後の問いに答えよ.\\ \\
\quad 地球温暖化問題に関して,二酸化炭素の排出量の削減が叫ばれている.2008年に日本で開かれたサミットでは,42年後の2050年までに,年当たりの排出量を2008年のときと比較して50$\%$以上削減する,という目標が提言された.この目標を達成するために,前年比同率で削減することを考える.\\
\quad 2008年における排出量を$a \ (a>0)$とし,毎年,前年の$d \times 100 \% \ (0<d<1)$を減らすこととする.2008年の1年後の2009年の排出量の目標は[\bf ア]である.2008年から$n$年後の年間排出量を$a_n$とおくと,$a_n=[イ]$である.目標を達成するには$\displaystyle a_{42} \leqq \frac{a}{2}$,つまり,$d$を用いた式で表せば,
\[ [ウ] \leqq \frac{1}{2} \]
が成り立てばよい.両辺の逆数をとれば$\displaystyle \frac{1}{[ウ]} \geqq 2$となる.ところで,不等式
\[ (1+d)^{42} < \frac{1}{[ウ]} \ \, \cdots\cdots \maru{1} \]
が成り立つことがわかる.従って,
\[ (1+d)^{42} \geqq 2 \qquad\qquad \cdots\cdots \maru{2} \]
を満たす$d$を見つければ目標を達成することは明らかである.不等式\maru{2}の左辺は,二項定理により
\[ (1+d)^{42} =\sum_{r=0}^{42} [エ] \]
と表される.これを用いると,\underline{$d=0.02$は不等式\maru{2}を満たす}ことがわかる.つまり,毎年$2\%$の削減を2009年から行ったとすれば,42年後の2050年の排出量は2008年の$50\%$未満となることがわかった.

(1)文章中の[ア]~[エ]に当てはまる式を答えよ.
(2)$0<d<1$とするとき,不等式\maru{1}を証明せよ.
(3)下線部の命題を証明せよ.
(4)毎年$2\%$の削減を行った場合でも,42年間の排出量の合計は,削減率を0のまま2008年と同じ排出量を同じ期間続けたときの排出量の合計の$\displaystyle \frac{7}{12}$倍より大きくなることを証明せよ.
東北学院大学 私立 東北学院大学 2011年 第1問
次の各問題の$[ ]$に適する答えを記入せよ.

(1)$2 \log_2x-\log_2 (3x-2) \geqq 0$を満たす$x$の範囲は$[ア]$である.
(2)$3$つのサイコロを同時にふるとき,目の和の合計が$16$以上となる確率は$[イ]$である.
(3)原点を$\mathrm{O}$とし,$\mathrm{A}(0,\ 0,\ 2)$,$\mathrm{B}(1,\ 1,\ 0)$に対し直線$\mathrm{AB}$上の点$\mathrm{P}$が$\mathrm{OP} \perp \mathrm{AB}$を満たすとする.このとき$\mathrm{P}$の座標は$[ウ]$である.
甲南大学 私立 甲南大学 2011年 第1問
以下の空欄にあてはまる数を入れよ.

(1)$\triangle \mathrm{ABC}$において,$\angle \mathrm{B}={105}^\circ$,$\angle \mathrm{C}={30}^\circ$,$\mathrm{BC}=6$であるとき,$\triangle \mathrm{ABC}$の外接円の半径は$[1]$であり,辺$\mathrm{AC}$の長さは$[2]$である.
(2)次の不等式をみたす$x$の値の範囲は,$[3]<x<[4]$である.
\[ \log_2(3x-1)+\log_2(4x+5)<\log_4(7x-1)^2 \]
(3)$3$次方程式$x^3+(2a-1)x^2+(5a+8)x-7a-8=0$は解$x=1$をもつという.この方程式が$3$重解をもつのは,$a=[5]$のときであり,ちょうど$2$つの異なる実数解をもつのは$a=[6]$のときである.
(4)$y=|x^2-4|$のグラフと直線$y=x+k$の共有点の個数が$3$個であるとき,$k$の値は$[7]$または$[8]$である.
(5)$2,\ 2,\ 2,\ 3,\ 3,\ 4,\ 4$の数が$1$つずつ書かれた$7$枚のカードが箱の中に入っており,箱から同時にカードを$3$枚取り出すという試行を行う.取り出したカードに書いてある数の合計を得点とするとき,得点が$8$点の確率は$[9]$である.また,$1$回の試行における得点の期待値は$[10]$である.
学習院大学 私立 学習院大学 2011年 第1問
袋の中に赤,白,青,黒の色の球がそれぞれ$5$個ずつ合計$20$個入っている.その袋から$9$個の球を同時に取り出す.取り出された球の中に同じ色の球が$5$個入っているときのみ,色に応じて得点を与え,それ以外の場合の得点は$0$点である.$5$個そろった球の色が赤なら得点は$900$点,白なら$2020$点,青なら$4000$点,黒なら$6000$点とする.得点の期待値を求めよ.
立教大学 私立 立教大学 2011年 第2問
袋に赤玉が$1$個,白玉が$2$個の合計$3$個の玉が入っている.袋から玉$1$個を取り出し,玉の色を確認し,また袋に戻す,という作業を$2$回行い,これを$1$回の試行と考える.この試行を使って,$\mathrm{A}$君と$\mathrm{B}$君の$2$人が以下のようなゲームをすることにした.
\begin{itemize}
取り出した玉の色の$1$番目が白,$2$番目が赤であれば,$\mathrm{A}$君が勝ち抜けとなり,
取り出した玉の色の$1$番目が赤,$2$番目が白であれば,$\mathrm{B}$君が勝ち抜けとなり,
取り出した玉の色が$2$回とも同じ色であれば,引き分けとし,試行を続ける.
\end{itemize}
また,どちらか$1$人が勝ち抜けた後も,同様に玉を$2$回出し入れする試行を続け,以下の場合にゲームを終了させることにした.
\begin{itemize}
残った$1$人が$\mathrm{A}$君のとき,取り出した玉の色の$1$番目が白,$2$番目が赤である場合.
残った$1$人が$\mathrm{B}$君のとき,取り出した玉の色の$1$番目が赤,$2$番目が白である場合.
\end{itemize}
このとき,次の問に答えよ.

(1)$1$回目の試行で,$\mathrm{A}$君が勝ち抜ける確率,$\mathrm{B}$君が勝ち抜ける確率,引き分けになる確率をそれぞれ求めよ.
(2)$3$回目の試行でゲームが終了する確率を求めよ.
(3)$\mathrm{A}$君のほうが早く勝ち抜けし,その後,$n$回目の試行で$\mathrm{B}$君がゲームを終了させる確率を$n$を用いて表せ.ただし,$n \geqq 2$とし,$n$には$\mathrm{A}$君が勝ち抜けるまでの試行の回数も含むものとする.
上智大学 私立 上智大学 2011年 第3問
ボタンを押すと,$0$と$1$のどちらか一方の数字を表示する機械がある.ボタンを連続して押すとき,直前に表示された数字と同じ数字が再び表示される確率は$\displaystyle \frac{2}{3}$,違う数字の表示される確率は$\displaystyle \frac{1}{3}$である.ただし,始めにボタンを押すときには,$0$と$1$が表示される確率は等しい.

(1)$4$回連続してボタンを押すとき,$4$回とも同じ数字が表示される確率は$\displaystyle \frac{[ヒ]}{[フ]}$である.また,$4$回目に表示された数字が$1$である確率は$\displaystyle \frac{[ヘ]}{[ホ]}$である.
(2)$4$回連続してボタンを押すときに表示される数字の合計が$1$である確率は$\displaystyle \frac{[マ]}{[ミ]}$である.また,合計が$2$である確率は$\displaystyle \frac{[ム]}{[メ]}$である.
(3)始めに表示された数字が$1$のとき,さらに$4$回連続してボタンを押して表示される$4$つの数字の合計が$2$である確率は$\displaystyle \frac{[モ]}{[ヤ]}$である.
スポンサーリンク

「合計」とは・・・

 まだこのタグの説明は執筆されていません。