タグ「合同」の検索結果

2ページ目:全21問中11問~20問を表示)
東北学院大学 私立 東北学院大学 2012年 第5問
正九角形の頂点から$3$個を選んで三角形を作るとき,次の問いに答えよ.

(1)三角形はいくつできるか.
(2)互いに合同なものは同じ種類とするとき,異なる種類の三角形は何種類できるか.
中央大学 私立 中央大学 2012年 第3問
$h>0,\ d \geqq 0$とし,座標空間において$4$点$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(0,\ 0,\ -1)$,$\mathrm{C}(h,\ 0,\ -d)$,$\mathrm{D}(0,\ h,\ d)$を頂点とする四面体を考える.さらに$\mathrm{CD}=2$とする.したがって,四面体の$6$本の辺のうち向かい合う$2$辺の長さは$3$組とも互いに等しい.つまり
\[ \mathrm{AB}=\mathrm{CD},\quad \mathrm{AC}=\mathrm{BD},\quad \mathrm{AD}=\mathrm{BC} \]
となっており,$4$つの面はすべて互いに合同である.この四面体$\mathrm{ABCD}$について以下の問いに答えよ.

(1)$h$を$d$で表し,$d$のとりうる値の範囲を求めよ.

点$\mathrm{A}$を通り平面$\mathrm{BCD}$に垂直な直線と平面$\mathrm{BCD}$の交点を$\mathrm{P}$とおく.この点$\mathrm{P}$を点$\mathrm{A}$から平面$\mathrm{BCD}$に下ろした垂線の足とよぶ.同様に,点$\mathrm{B}$から平面$\mathrm{ACD}$に下ろした垂線の足を$\mathrm{Q}$,点$\mathrm{C}$から平面$\mathrm{ABD}$へ下ろした垂線の足を$\mathrm{R}$,点$\mathrm{D}$から平面$\mathrm{ABC}$へ下ろした垂線の足を$\mathrm{S}$とおく.

(2)点$\mathrm{R}$,$\mathrm{S}$は直線$\mathrm{AB}$上にあることに注意して,$\mathrm{R}$,$\mathrm{S}$の座標を$d$で表せ.また,四面体$\mathrm{ABCD}$の対称性を考慮して,点$\mathrm{P}$,$\mathrm{Q}$の座標を$d$で表せ.さらに,計算により$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BQ}}=0$を確認せよ.
(3)辺$\mathrm{BD}$の長さのとりうる値の範囲を求めよ.
(4)平面$\mathrm{ABC}$と平面$\mathrm{ACD}$が直線$\mathrm{AC}$に沿って角度$\displaystyle \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$で交わっている.$\theta$のとりうる値の範囲を求めよ.ただし$2$平面の交わる角度とは,それぞれの平面に直交する$2$直線のなす角度である.
弘前大学 国立 弘前大学 2011年 第5問
正20角形$P$について,次の問いに答えよ.

(1)正20角形$P$の対角線は何本ひけるか.
(2)正20角形$P$の頂点から3つを選び,これらを頂点とする三角形をつくるとき,$P$と辺を共有しない三角形はいくつあるか.ただし,合同な三角形は区別せずに1つと数えることにする.
福井大学 国立 福井大学 2011年 第1問
1辺の長さが1の正十二面体を考える.点O,A,B,C,D, \\
E,F,Gを図に示す正十二面体の頂点とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$, \\
$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ. \\
ただし,1辺の長さが1の正五角形の対角線の長さは \\
$\displaystyle \frac{1+\sqrt{5}}{2}$であることを用いてよい.なお,正十二面体では, \\
すべての面は合同な正五角形であり, 各頂点は$3$つの正五 \\
角形に共有されている.
\img{366_2547_2011_1}{55}

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(2)$\overrightarrow{\mathrm{CD}}$,$\overrightarrow{\mathrm{BE}}$,$\overrightarrow{\mathrm{OD}}$,$\overrightarrow{\mathrm{OE}}$,$\overrightarrow{\mathrm{OF}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{DF}}$と$\overrightarrow{\mathrm{EF}}$のなす角を求めよ.
山形大学 国立 山形大学 2011年 第1問
四角形ABCDが円に内接しており,$\angle \text{ABC}=120^\circ,\ \text{AB}=2,\ \text{BC}=\sqrt{3}-1$を満たしているとする.このとき,次の問に答えよ.ただし,$\text{CD}=a,\ \text{AD}=b$とおき,2つの対角線AC,BDの交点をOとする.

(1)対角線ACの長さと$\angle \text{ACB}$の大きさを求めよ.
(2)対角線ACとBDが直交するとき,三角形AOBと三角形DOCは合同であることを示せ.
(3)対角線ACとBDが直交するとき,$a,\ b$の値を求めよ.
(4)$b=2a$のとき,$a$の値と$\angle \text{DCA},\ \angle \text{BAD}$の大きさを求めよ.
(5)$b=2a$のとき,三角形ABDに内接する円の半径$r$の値を求めよ.
福井大学 国立 福井大学 2011年 第2問
$1$辺の長さが$1$の正十二面体を考える.点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$, \\
$\mathrm{E}$,$\mathrm{F}$を図に示す正十二面体の頂点とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$, \\
$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ. \\
なお,正十二面体では,すべての面は合同な正五角形であり, \\
各頂点は$3$つの正五角形に共有されている.
\img{366_2546_2011_1}{36}


(1)$1$辺の長さが$1$の正五角形の対角線の長さを求めて, \\
内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(2)$\overrightarrow{\mathrm{CD}}$,$\overrightarrow{\mathrm{OF}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\mathrm{O}$から平面$\mathrm{ABD}$に垂線$\mathrm{OH}$を下ろす.$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.さらにその長さを求めよ.
防衛大学校 国立 防衛大学校 2011年 第3問
右の図のような格子状の道および斜めの道がある.次の場合の最短経路は何通りあるか.ただし,小さいマス目はすべて合同な正方形とする.
(図は省略)

(1)$\mathrm{A}$から$\mathrm{B}$まで行く.
(2)$\mathrm{A}$から斜めの道を通らずに$\mathrm{B}$まで行く.
(3)$\mathrm{A}$から$\mathrm{C}$まで行く.
宮城教育大学 国立 宮城教育大学 2011年 第3問
$n$を1以上の整数とする.$k=1,\ 2,\ \cdots,\ n,\ n+1$に対して,$xy$平面上で,点$(0,\ k)$を通り$x$軸に平行な直線を$\ell_k$とし,点$(k,\ 0)$を通り$y$軸に平行な直線を$m_k$とする.このとき,次の問いに答えよ.

(1)直線
\[ \ell_1,\ \ell_2,\ \cdots,\ \ell_n,\ \ell_{n+1} \]
から相異なる2本を選び,直線
\[ m_1,\ m_2,\ \cdots,\ m_n,\ m_{n+1} \]
から相異なる2本を選ぶと長方形が1つできる.こうしてできる長方形の総数を求めよ.ただし,合同であっても位置が違う長方形は異なるものとする.
(2)(1)で考えた長方形のうちから1つとるとき,それが正方形である確率を求めよ.
高知工科大学 公立 高知工科大学 2011年 第2問
底面が正方形で,4個の側面がすべて合同な二等辺三角形である四角錘を考える.底面の正方形の一辺の長さを$x$,側面の二等辺三角形の等しい辺の長さを$a$とする.この四角錘の体積を$V$として,次の各問に答えよ.

(1)$V$を$a$と$x$で表せ.
(2)$x$のとりうる値の範囲を$a$を用いて表せ.
(3)$V$の最大値を$a$を用いて表せ.また,そのときの$x$の値を求めよ.
東京大学 国立 東京大学 2010年 第6問
四面体$\mathrm{OABC}$において,$4$つの面はすべて合同であり,$\mathrm{OA}=3$,$\mathrm{OB}=\sqrt{7}$,$\mathrm{AB}=2$であるとする.また,$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を含む平面を$L$とする.

(1)点$\mathrm{C}$から平面$L$におろした垂線の足を$\mathrm{H}$とおく.$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(2)$0<t<1$をみたす実数$t$に対して,線分$\mathrm{OA}$,$\mathrm{OB}$各々を$t:1-t$に内分する点をそれぞれ$\mathrm{P}_t$,$\mathrm{Q}_t$とおく.$2$点$\mathrm{P}_t$,$\mathrm{Q}_t$を通り,平面$L$に垂直な平面を$M$とするとき,平面$M$による四面体$\mathrm{OABC}$の切り口の面積$S(t)$を求めよ.
(3)$t$が$0<t<1$の範囲を動くとき,$S(t)$の最大値を求めよ.
スポンサーリンク

「合同」とは・・・

 まだこのタグの説明は執筆されていません。