タグ「右辺」の検索結果

1ページ目:全4問中1問~10問を表示)
明治大学 私立 明治大学 2016年 第3問
次の空欄に当てはまる$0$から$9$までの数字を入れよ.ただし,空欄$[サシ]$は$2$桁の数をあらわす.

(1)$k$を自然数とすると
\[ \int_0^\pi \sin^k x \cos x \, dx=[ア] \]
である.
(2)直線$y=\sqrt{3}x$を$\ell$とし,曲線$y=\sqrt{3}x+\sin^2 x$を$C$とする.直線$\ell$上に点$\mathrm{A}$をとり,点$\mathrm{A}$において直線$\ell$と直交する直線を$L$とする.関数$y=\sqrt{3}x+\sin^2 x$は$x$に関する単調増加関数であるので,直線$L$と曲線$C$の共有点は$1$点のみである.その共有点を$\mathrm{B}(t,\ \sqrt{3}t+\sin^2 t)$とする.点$\mathrm{A}$と点$\mathrm{B}$の距離を$h$とおくと,
\[ h=\frac{1}{[イ]} \sin^2 t \]
となる.また,原点$\mathrm{O}$と点$\mathrm{A}$の距離を$p$とする.点$\mathrm{A}$の$x$座標が$0$以上であるときは
\[ p=[ウ]t+\frac{\sqrt{[エ]}}{[オ]} \sin^2 t \]
となる.この等式の右辺を$f(t)$とおく.
$0 \leqq x \leqq \pi$の範囲で曲線$C$と直線$\ell$で囲まれた図形を考え,その図形を直線$\ell$の周りに$1$回転させてできる立体の体積を$V$とすると,$\displaystyle V=\pi \int_0^{\mkakko{カ} \pi} h^2 \, dp$となる.ここで,$p=f(t)$とおいて置換積分すれば,
\[ V=\frac{\pi}{[キ]} \int_0^{\pi} \sin^4 t \, dt \]
が成り立つ.$\displaystyle \int_0^{\pi} \sin^4 t \, dt=\frac{[ク]}{[ケ]} \pi$より,$\displaystyle V=\frac{[コ]}{[サシ]} \pi^2$である.
杏林大学 私立 杏林大学 2013年 第4問
$[オ]$,$[タ]$,$[チ]$,$[ト]$,$[ナ]$の解答は対応する解答群の中から最も適当なものを$1$つ選べ.

条件$a_1=0$,$a_2=0$と漸化式
\[ a_{n+2}-3a_{n+1}+2a_n=2^n \log_2 \frac{(n+1)^2}{n} \cdots\cdots (*) \]
$(n=1,\ 2,\ 3,\ \cdots)$で定められる数列の一般項を,以下の要領で求めてみよう.

(1)漸化式$(*)$より,ベクトル$\overrightarrow{b_n}=\left( \begin{array}{c}
a_{n+1} \\
a_n
\end{array} \right)$に対して
\[ \overrightarrow{b_{n+1}}=A \overrightarrow{b_n}+\left( \begin{array}{c}
2^n \log_2 \displaystyle\frac{(n+1)^2}{n} \\
0
\end{array} \right) \]
が成立する.ただし,行列$A$は$A=\left( \begin{array}{cc}
[ア] & [イウ] \\
[エ] & 0
\end{array} \right)$である.
この式の両辺に,$A$の逆行列$A^{-1}$を左から$n$回かけると
\[ (A^{-1})^n \overrightarrow{b_{n+1}}=(A^{-1})^{n-1} \overrightarrow{b_n}+(A^{-1})^n \left( \begin{array}{c}
\displaystyle 2^n \log_2 \frac{(n+1)^2}{n} \\
0
\end{array} \right) \]
となり,$(A^{-1})^{n-1} \overrightarrow{b_n}$の階差数列がわかる.これより,$2$以上の整数$n$に対し,
\[ (A^{-1})^{n-1} \overrightarrow{b_{n}}=\overrightarrow{b_1}+\sum_{k=1}^{[オ]} (A^{-1})^k \left( \begin{array}{c}
\displaystyle 2^k \log_2 \frac{(k+1)^2}{k} \\
0
\end{array} \right) \cdots\cdots (**) \]
を得る.
(2)$(**)$式の右辺第一項は$\overrightarrow{b_1}=\left( \begin{array}{c}
[カ] \\
[キ]
\end{array} \right)$であり,$\displaystyle A^{-1}=\frac{1}{2} \left( \begin{array}{cc}
[ク] & [ケ] \\
[コサ] & [シ]
\end{array} \right)$は行列$P=\left( \begin{array}{cc}
2 & 1 \\
1 & 1
\end{array} \right)$を用いて
\[ A^{-1}=P \left( \begin{array}{cc}
\displaystyle\frac{[ス]}{[セ]} & 0 \\
0 & [ソ]
\end{array} \right) P^{-1} \]
と表されるので,$(**)$式右辺の和の項について,次式が成立する.
\[ \sum_{k=1}^{[オ]} (A^{-1})^k \left( \begin{array}{c}
\displaystyle 2^k \log_2 \frac{(k+1)^2}{k} \\
0
\end{array} \right)=P \left( \begin{array}{c}
\log_2 [タ] \\
-2^n \log_2 [チ]
\end{array} \right) \]
(3)$(2)$の結果と,行列$A$が同じ$P$を用いて
\[ A=P \left( \begin{array}{cc}
[ツ] & 0 \\
0 & [テ]
\end{array} \right) P^{-1} \]
と表わされることに注意すると,$(**)$式の両辺に行列$A$を左から$(n-1)$回かけて得られる$\overrightarrow{b_n}$から,一般項$a_n$は
\[ a_n=2^{[ト]} \log_2 [ナ] \]
($n=2,\ 3,\ 4,\ \cdots$)となる.

$[オ]$,$[ト]$の解答群
\[ \begin{array}{llll}
\nagamaruichi n-1 & \nagamaruni n & \nagamarusan n+1 & \nagamarushi 1-n \\
\nagamarugo -n & \nagamaruroku -n-1 \phantom{AA} & \nagamarushichi \displaystyle\frac{n(n+1)}{2} \phantom{AA} & \nagamaruhachi n^2-1 \\
\nagamarukyu \displaystyle\frac{1}{6}n(n+1)(2n+1) & & &
\end{array} \]
$[タ]$,$[チ]$,$[ナ]$の解答群
\[ \begin{array}{llll}
\nagamaruichi n-1 & \nagamaruni n & \nagamarusan \displaystyle\frac{n+1}{n} \phantom{AA} & \nagamarushi \displaystyle\frac{4n-6}{n} \\
\nagamarugo n^2-4n+5 & \nagamaruroku (n-1)! \phantom{AA} & \nagamarushichi n! \phantom{AA} & \nagamaruhachi n!-1 \\
\nagamarukyu (n-1) \times n! \phantom{AA} & \nagamarurei n \times n! & &
\end{array} \]
法政大学 私立 法政大学 2012年 第1問
次の問いに答えよ.

(1)$a>0$として,$x=\log_2 a$とおく.
$x=5$のとき,$a=[アイ]$である.次に,$2a \neq 1$のとき,不等式
\[ \log_2 256a > 3 \log_{2a} a\]
の左辺は$[ウ]+x$,右辺は$\displaystyle \frac{[エ]x}{[オ]+x}$である.したがって,上の不等式を満たす$x$の値の範囲は
\[ [カキ] < x < [クケ],\quad x > [コサ] \]
である.
(2)$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$を満たすとする.また,
\[ s=\frac{1}{4}\cos \theta, \quad t=\frac{16\sqrt{3}}{3}\sin \left( \theta+\frac{2}{3}\pi \right) \]
とおく.$s$のとり得る値の範囲は
\[ 2^{\frac{[シス]}{[セ]}} \leqq s \leqq 2^{[ソタ]} \]
であり,$t$のとり得る値の範囲は
\[ [チ]\sqrt{[ツ]} - \frac{[テ]\sqrt{[ト]}}{[ナ]} \leqq t \leqq [ニ] \]
である.
\[ st=[ヌ]+\frac{[ネ]\sqrt{[ノ]}}{[ハ]} \sin \left( 2\theta + \frac{[ヒ]}{[フ]}\pi \right) \]
であり,$st<1$となる$\theta$の値の範囲は,$\displaystyle \theta > \frac{\pi}{[ヘ]}$である.
東京理科大学 私立 東京理科大学 2012年 第1問
$[ ]$内のカタカナにあてはまる$0$から$9$までの数字を求めよ.

(1)$k$を自然数とすると,不等式
\[ k>\frac{\sqrt{k}+\sqrt{k-1}}{2} \]
が成立する.この不等式の右辺の逆数は$\displaystyle [ア] \left( \sqrt{k}-\sqrt{k-[イ]} \right)$であるから,不等式
\[ \frac{1}{k}<[ア] \left( \sqrt{k}-\sqrt{k-[イ]} \right) \]
を得る.この不等式がすべての自然数$k$に対して成立することより,
\[ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \frac{1}{k}=[ウ] \]
であることがわかる.
(2)自然数$n$に対し,
\[ a_n=\sum_{m=1}^{\infty} \frac{1}{m(m+n+1)},\quad s_n=\sum_{k=1}^n \frac{1}{k} \]
と定める.

(i) $\displaystyle \sum_{n=2}^{\infty} \frac{1}{n(n+1)}$を求めよ.

(ii) $\displaystyle \sum_{n=1}^{\infty} \left( \frac{1}{n}-\frac{1}{n+1} \right) s_{n+1}$を求めよ.

(ヒント:$n \geqq 2$であるような各自然数$n$に対して$s_{n+1}-s_n$を考えることにより,$(ⅰ)$の結果が使える形に変形せよ.)
(iii) $n$を自然数とする.また,$p$は自然数で,等式
\[ \sum_{m=1}^{\infty} \left( \frac{1}{m}-\frac{1}{m+n+1} \right)=s_p \]
が成立しているとする.このとき,$p$を$n$の$1$次式の形に表せ.
\mon[$\tokeishi$] $n$を自然数とし,$p$は$(ⅲ)$における通りであるとする.また,$q$は自然数で,等式
\[ a_n=\frac{s_p}{q} \]
が成立しているとする.このとき,$q$を$n$の$1$次式の形に表せ.
\mon[$\tokeigo$] $\displaystyle \sum_{n=1}^{\infty} \frac{a_n}{n}$を求めよ.
スポンサーリンク

「右辺」とは・・・

 まだこのタグの説明は執筆されていません。