タグ「右端」の検索結果

1ページ目:全7問中1問~10問を表示)
札幌医科大学 公立 札幌医科大学 2016年 第3問
$2$種類の文字「$\mathrm{A}$」,「$\mathrm{B}$」を$1$つずつ左から右に書いていく.書かれる文字が$\mathrm{A}$か$\mathrm{B}$かは確率$\displaystyle \frac{1}{2}$で決まるものとする.しかし,次の$2$つのルールにより文字が消去されることがある:

\mon[$1.$] 右端の$\mathrm{A}$の右隣に$\mathrm{B}$が書かれる場合,その$\mathrm{B}$は確率$\displaystyle \frac{2}{3}$で消去される
\mon[$2.$] 右端の$\mathrm{B}$の左側に$\mathrm{A}$が$1$つ以上存在する場合,それらのうちでもっとも右にある$\mathrm{A}$を$\maruA$と呼ぶ.この状況で,右端の$\mathrm{B}$の右隣に$\mathrm{A}$が書かれる場合,確率$\displaystyle \frac{2}{3}$でその$\mathrm{A}$と$\maruA$より右側のすべての文字が消去される(ただし$\maruA$は消去されない).

上記$2$つのルールにあてはまらない場合は,消去される文字はないものとする.$n$文字を書いたときに,実際に残っている文字数を$a_n$とする.例えば,$3$文字を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{A}$の順に書いた場合の結果は「$\mathrm{ABA}$」,「$\mathrm{AA}$」,「$\mathrm{A}$」のいずれかとなる.

(1)$a_3=2$となる確率を求めよ.
(2)$a_4=1$となる確率を求めよ.
(3)$a_n=n$となる確率を$n$を用いて表せ.
信州大学 国立 信州大学 2014年 第3問
$3$個の玉が横に一列に並んでいる.コインを$1$回投げて,それが表であれば,そのときに中央にある玉とその左にある玉とを入れ替える.また,それが裏であれば,そのときに中央にある玉とその右にある玉とを入れ替える.この操作を繰り返す.

(1)最初に中央にあったものが$n$回後に中央にある確率を求めよ.
(2)最初に右端にあったものが$n$回後に右端にある確率を求めよ.
信州大学 国立 信州大学 2014年 第1問
$3$個の玉が横に一列に並んでいる.コインを$1$回投げて,それが表であれば,そのときに中央にある玉とその左にある玉とを入れ替える.また,それが裏であれば,そのときに中央にある玉とその右にある玉とを入れ替える.この操作を繰り返す.

(1)最初に中央にあったものが$n$回後に中央にある確率を求めよ.
(2)最初に右端にあったものが$n$回後に右端にある確率を求めよ.
信州大学 国立 信州大学 2014年 第2問
$3$個の玉が横に一列に並んでいる.コインを$1$回投げて,それが表であれば,そのときに中央にある玉とその左にある玉とを入れ替える.また,それが裏であれば,そのときに中央にある玉とその右にある玉とを入れ替える.この操作を繰り返す.

(1)最初に中央にあったものが$n$回後に中央にある確率を求めよ.
(2)最初に右端にあったものが$n$回後に右端にある確率を求めよ.
九州大学 国立 九州大学 2013年 第3問
横一列に並んだ6枚の硬貨に対して,以下の操作$\mathrm{L}$と操作$\mathrm{R}$を考える.

\mon[$\mathrm{L}:$] さいころを投げて,出た目と同じ枚数だけ左端から順に硬貨の表と裏を反転する.
\mon[$\mathrm{R}:$] さいころを投げて,出た目と同じ枚数だけ右端から順に硬貨の表と裏を反転する.

たとえば,表表裏表裏表と並んだ状態で操作$\mathrm{L}$を行うときに,3の目が出た場合は,裏裏表表裏表となる.以下,「最初の状態」とは硬貨が6枚とも表であることとする.

(1)最初の状態から操作$\mathrm{L}$を2回続けて行うとき,表が1枚となる確率を求めよ.
(2)最初の状態から$\mathrm{L},\ \mathrm{R}$の順に操作を行うとき,表の枚数の期待値を求めよ.
(3)最初の状態から$\mathrm{L},\ \mathrm{R},\ \mathrm{L}$の順に操作を行うとき,すべての硬貨が表となる確率を求めよ.
九州大学 国立 九州大学 2013年 第3問
横一列に並んだ6枚の硬貨に対して,以下の操作$\mathrm{L}$と操作$\mathrm{R}$を考える.

\mon[$\mathrm{L}:$] さいころを投げて,出た目と同じ枚数だけ左端から順に硬貨の表と裏を反転する.
\mon[$\mathrm{R}:$] さいころを投げて,出た目と同じ枚数だけ右端から順に硬貨の表と裏を反転する.

たとえば,表表裏表裏表と並んだ状態で操作$\mathrm{L}$を行うときに,3の目が出た場合は,裏裏表表裏表となる.以下,「最初の状態」とは硬貨が6枚とも表であることとする.

(1)最初の状態から操作$\mathrm{L}$を2回続けて行うとき,表が1枚となる確率を求めよ.
(2)最初の状態から$\mathrm{L},\ \mathrm{R}$の順に操作を行うとき,表の枚数の期待値を求めよ.
(3)最初の状態から$\mathrm{L},\ \mathrm{R},\ \mathrm{L}$の順に操作を行うとき,すべての硬貨が表となる確率を求めよ.
山梨大学 国立 山梨大学 2012年 第1問
次の問題文の枠内にあてはまる数あるいは数式を答えよ.

(1)関数$f(x)$が$p$を周期とする周期関数であるとは,すべての$x$で等式$[ ]$が成立することである.関数$\displaystyle g(x)=\sin^2 \left( 5x+\frac{\pi}{3} \right)$の正の最小の周期は$[ ]$である.
(2)実数$x$が$-\pi<x \leqq \pi$のとき,無限級数$\displaystyle \sum_{k=1}^\infty \sin^k x$が収束する条件は,$x$の値が$[ ]$以外のときであり,収束するときの無限級数の和は$[ ]$である.
(3)$\displaystyle \int_{-10}^0 \frac{1}{(x+11)(x+12)} \, dx=[ ]$であり,$\displaystyle \int_{-10}^0 \log (x+11) \, dx=[ ]$である.
(4)楕円$9x^2+4y^2+36x-40y+100=0$の$2$つの焦点のうち,$y$座標が大きい方の座標は$[ ]$である.この楕円の長軸の長さは$[ ]$である.
(5)関数$f(x)$を$f(x)=2x^2+1$とし,区間$[0,\ 1]$を$n$等分した小区間を,$\displaystyle \left[ \frac{0}{n},\ \frac{1}{n} \right]$,$\displaystyle \left[ \frac{1}{n},\ \frac{2}{n} \right]$,$\cdots$,$\displaystyle \left[ \frac{n-1}{n},\ \frac{n}{n} \right]$とする.各小区間を底辺とする$n$個の長方形の面積の総和をとる.$k$番目の小区間$\displaystyle \left[ \frac{k-1}{n},\ \frac{k}{n} \right]$において,長方形の高さとして左端での関数$f(x)$の値を用いたとき,この小区間での長方形の面積は$[ ]$となり,それらの長方形の面積の総和を$s_n$とする.また,$k$番目の小区間$\displaystyle \left[ \frac{k-1}{n},\ \frac{k}{n} \right]$において,長方形の高さとして右端での関数$f(x)$の値を用いたときの長方形の面積の総和を$S_n$とする.このとき,$S_n-s_n$は$[ ]$となる.
スポンサーリンク

「右端」とは・・・

 まだこのタグの説明は執筆されていません。