タグ「取り」の検索結果

1ページ目:全8問中1問~10問を表示)
名古屋大学 国立 名古屋大学 2016年 第3問
玉が$2$個ずつ入った$2$つの袋$\mathrm{A}$,$\mathrm{B}$があるとき,袋$\mathrm{B}$から玉を$1$個取り出して袋$\mathrm{A}$に入れ,次に袋$\mathrm{A}$から玉を$1$個取り出して袋$\mathrm{B}$に入れる,という操作を$1$回の操作と数えることにする.$\mathrm{A}$に赤玉が$2$個,$\mathrm{B}$に白玉が$2$個入った状態から始め,この操作を$n$回繰り返した後に袋$\mathrm{B}$に入っている赤玉の個数が$k$個である確率を$P_n(k) (n=1,\ 2,\ 3,\ \cdots)$とする.このとき,次の問に答えよ.

(1)$k=0,\ 1,\ 2$に対する$P_1(k)$を求めよ.
(2)$k=0,\ 1,\ 2$に対する$P_n(k)$を求めよ.
徳島大学 国立 徳島大学 2016年 第4問
赤玉$1$個と白玉$3$個が入っている袋$\mathrm{A}$から玉を$2$個取り出し,空の袋$\mathrm{B}$に入れた状態を最初の入れ方とする.次の$(ⅰ)$,$(ⅱ)$を順に行うことを$1$回の作業とする.


(i) 袋$\mathrm{A}$から玉を$1$個取り出し,その玉が白玉ならば袋$\mathrm{A}$に戻し,赤玉ならば袋$\mathrm{B}$に入れてよくかき混ぜた上で袋$\mathrm{B}$から玉を$1$個取り出して袋$\mathrm{A}$に入れる.
(ii) 袋$\mathrm{B}$から玉を$1$個取り出し,その玉が白玉ならば袋$\mathrm{B}$に戻し,赤玉ならば袋$\mathrm{A}$に入れてよくかき混ぜた上で袋$\mathrm{A}$から玉を$1$個取り出して袋$\mathrm{B}$に入れる.

最初の入れ方で袋$\mathrm{A}$に赤玉がある確率を$P_0$とし,上の作業を$n$回行った後で袋$\mathrm{A}$に赤玉がある確率を$P_n (n=1,\ 2,\ 3,\ \cdots)$とする.玉は色以外に区別できないものとして,次の問いに答えよ.

(1)$P_0,\ P_1$を求めよ.
(2)$P_n$を求めよ.
(3)最初の入れ方から作業を$n$回行って袋$\mathrm{A}$に赤玉があったとき,最初の入れ方で袋$\mathrm{A}$に赤玉がある確率を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第4問
$3$つの袋$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.袋$\mathrm{A}$には,$1$から$7$までの番号が書かれた玉がそれぞれ$2$個ずつ,計$14$個入っている.また,袋$\mathrm{B}$,袋$\mathrm{C}$には何も入っていない.以下,番号$i$が書かれた玉を「玉$i$」と呼ぶことにする.

袋$\mathrm{A}$から無作為に玉を$1$個取り出して袋$\mathrm{B}$に入れる.ここで袋$\mathrm{B}$に入れられた玉を玉$i$とするとき,玉$i-1$,玉$i$,玉$i+1$のうち袋$\mathrm{A}$に入っているものをそれぞれ$1$個ずつ取り出して袋$\mathrm{C}$に入れる.この一連の操作を繰り返す.
例えば,$1$回目の操作の最初に玉$7$が袋$\mathrm{B}$に入れられたとする.このとき,袋$\mathrm{A}$には玉$6$と玉$7$は入っているが,玉$8$は入っていないので,玉$6$と玉$7$が$1$個ずつ袋$\mathrm{A}$から袋$\mathrm{C}$に移される.以上で$1$回目の操作が終わり,袋$\mathrm{A}$に玉$1,\ 1,\ 2,\ 2,\ 3,\ 3,\ 4,\ 4,\ 5,\ 5,\ 6$の計$11$個が入った状態で$2$回目の操作を始める.


(1)$1$回目の操作で玉$4$が袋$\mathrm{B}$に入れられたとき,$2$回目の操作で玉$5$が袋$\mathrm{B}$に入れられる確率は$\displaystyle \frac{[$43$]}{[$44$][$45$]}$である.

(2)$1$回目の操作で玉$2$が袋$\mathrm{B}$に入れられ,かつ$2$回目の操作で玉$1$が袋$\mathrm{B}$に入れられる確率は$\displaystyle \frac{[$46$]}{[$47$][$48$]}$である.

$1 \leqq i<j \leqq 7$を満たす整数$i,\ j$に対し,$2$回の操作を行った後に袋$\mathrm{B}$に玉$i$と玉$j$が入っている事象を$B_{i,j}$とし,事象$B_{i,j}$の確率を$P(B_{i,j})$で表す.

(3)$\displaystyle P(B_{1,2})=\frac{1}{7} \times \frac{[$49$]}{11}+\frac{1}{7} \times \frac{[$50$]}{10}=\frac{[$51$]}{110}$である.同様に,

$\displaystyle P(B_{1,3})=\frac{[$52$]}{[$53$][$54$]},\quad P(B_{1,7})=\frac{[$55$]}{[$56$][$57$]},$

$\displaystyle P(B_{2,3})=\frac{[$58$]}{[$59$][$60$]},\quad P(B_{2,4})=\frac{[$61$]}{[$62$][$63$]}$

である.
(4)$\comb{7}{2}$個の事象$B_{1,2},\ B_{1,3},\ \cdots,\ B_{6,7}$のうち,起こる確率が$P(B_{1,2})$であるものは$[$64$]$個,$P(B_{1,3})$であるものは$[$65$]$個,$P(B_{1,7})$であるものは$[$66$]$個,$P(B_{2,3})$であるものは$[$67$]$個,$P(B_{2,4})$であるものは$[$68$]$個である.

(5)$3$回の操作の後,袋$\mathrm{B}$に入っている玉の番号が全て偶数となる確率は$\displaystyle \frac{[$69$]}{[$70$][$71$]}$である.
福岡大学 私立 福岡大学 2015年 第4問
袋の中に白玉$3$個,黒玉$2$個,赤玉$5$個が入っている.この袋から,玉を$1$個取り出して袋に戻す試行を$4$回繰り返したとき,黒玉が少なくとも$2$回取り出される確率は$[ ]$である.また,この袋から$4$個の玉を同時に取り出すとき,赤玉が少なくとも$2$個含まれる確率は$[ ]$である.
兵庫県立大学 公立 兵庫県立大学 2015年 第5問
\begin{mawarikomi}{45mm}{
(図は省略)
}
図に示すように,ある円の周上に$4$つの円板$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$が置かれ,円の中心には円板$\mathrm{K}$が置かれている.当初$\mathrm{A}$には$\bullet$で示される小石が置かれている.この状態から,順次サイコロを振り以下の手順で小石を移動し小石の位置取りを繰り返す.

(i) 現在$\mathrm{K}$に小石がある場合は,出た目の数にかかわらず,新たな位置取りはそのまま$\mathrm{K}$とする.
(ii) 出た目の数が$1$または$2$の場合,小石を現在の場所から$\mathrm{K}$に移動する.
(iii) 出た目の数が$3$の場合,小石を現在の場所から反時計回り,すなわち,$\mathrm{A} \to \mathrm{B} \to \mathrm{C} \to \mathrm{D} \to \mathrm{A}$の向きで,隣接する円板に移動する.
\mon[$\tokeishi$] 出た目の数が$4$以上の場合,小石を現在の場所から時計回り,すなわち,$\mathrm{A} \to \mathrm{D} \to \mathrm{C} \to \mathrm{B} \to \mathrm{A}$の向きで,隣接する円板に移動する.

\end{mawarikomi}
次の問に答えなさい.

(1)$n$回目の位置取り後,小石が$\mathrm{K}$にある確率を$k_n$と表す.$k_n$を求めなさい.
(2)偶数回位置取りを行った場合,小石は$\mathrm{K}$になければ$\mathrm{A}$または$\mathrm{C}$にあることを示しなさい.
(3)$n$回目の位置取り後,小石が$\mathrm{A}$にある確率を$a_n$と表す.$a_2$を求めなさい.また,$a_{2n+2}$を$a_{2n}$および$k_{2n}$を用いて表しなさい.
(4)$a_n$を求めなさい.
東北大学 国立 東北大学 2013年 第6問
半径1の円を底面とする高さ$\displaystyle \frac{1}{\sqrt{2}}$の直円柱がある.底面の円の中心を$\mathrm{O}$とし,直径を1つ取り$\mathrm{AB}$とおく.$\mathrm{AB}$を含み底面と$45^\circ$の角度をなす平面でこの直円柱を2つの部分に分けるとき,体積の小さい方の部分を$V$とする.

(1)直径$\mathrm{AB}$と直交し,$\mathrm{O}$との距離が$t \ (0 \leqq t \leqq 1)$であるような平面で$V$を切ったときの断面積$S(t)$を求めよ.
(2)$V$の体積を求めよ.
徳島大学 国立 徳島大学 2012年 第2問
$n$を自然数とする.$\sqrt{3} \sin n \theta+\cos n \theta=0$を満たす$\theta>0$を小さいものから順に$n$個取り,$\theta_1,\ \theta_2,\ \cdots,\ \theta_n$とする.

(1)$k=1,\ 2,\ \cdots,\ n$に対し,$\theta_k$を求めよ.
(2)$\displaystyle \lim_{n \to \infty}n \cos \frac{\theta_n}{2}$を求めよ.
(3)$\displaystyle \lim_{n \to \infty} \frac{1}{n} \left( \cos \frac{\theta_1}{2}+\cos \frac{\theta_2}{2}+\cdots +\cos \frac{\theta_n}{2} \right)$を求めよ.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2012年 第1問
次の問いに答えよ.問い$(1)$~$(3)$については,$[ ]$にあてはまる適切な数値を記入せよ.

(1)$x$の$2$次不等式
\[ 6x^2-(16a+7)x+(2a+1)(5a+2) < 0 \]
をみたす整数$x$が$10$個となるように,正の整数$a$の値を定めると$[ア]$である.
(2)三角形$\mathrm{ABC}$において,$\mathrm{AB}=\sqrt{2}$,$\mathrm{BC}=2$,$\mathrm{CA}=\sqrt{3}$とし外心を$\mathrm{O}$とする.このとき,$\overrightarrow{\mathrm{AO}}=s\overrightarrow{\mathrm{AB}}+t\overrightarrow{\mathrm{AC}}$をみたす実数$s,\ t$の値は$s=[イ],\ t=[ウ]$である.
(3)袋$\mathrm{A}$には赤玉$2$個と白玉$1$個,袋$\mathrm{B}$には赤玉$1$個と白玉$2$個が入っている.袋$\mathrm{A}$から玉を$2$個取り出して袋$\mathrm{B}$に入れ,よくかき混ぜて,袋$\mathrm{B}$から玉を$2$個取り出して袋$\mathrm{A}$に入れる.このとき,袋$\mathrm{A}$に入っている白玉の個数を$X$とすると,$X=0$となる確率は$[エ]$であり,$X=2$となる確率は$[オ]$である.
(4)関数$f(x)=|x^3|$が$x=0$で微分可能であるかどうか調べよ.
スポンサーリンク

「取り」とは・・・

 まだこのタグの説明は執筆されていません。