タグ「反時計回り」の検索結果

7ページ目:全65問中61問~70問を表示)
大阪教育大学 国立 大阪教育大学 2010年 第1問
平面上に,点O,Aを$|\overrightarrow{\mathrm{OA}}|=1$であるようにとる.Oを中心にAを反時計回りに,$\displaystyle \frac{\pi}{6}$回転させた位置にある点をB,$\displaystyle \frac{\pi}{2}$回転させた位置にある点をCとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$と表す.次の問に答えよ.

(1)$\overrightarrow{b}$を$\overrightarrow{a},\ \overrightarrow{c}$を用いて表せ.
(2)$\triangle$OABの面積と$\triangle$OBCの面積をそれぞれ求めよ.
(3)直線ACと直線OBとの交点をDとする.また,Bを通って直線ACに平行な直線と,直線OAとの交点をEとする.$\overrightarrow{d}=\overrightarrow{\mathrm{OD}},\ \overrightarrow{e}=\overrightarrow{\mathrm{OE}}$と表す.このとき,$|\overrightarrow{d}|$と$|\overrightarrow{e}|$をそれぞれ求めよ.
(4)次の式を満たす点Pの存在する領域の面積を求めよ.
\[ \overrightarrow{\mathrm{OP}}=s\overrightarrow{e}+t\overrightarrow{c},\quad (0 \leqq s,\ 0 \leqq t,\ 1 \leqq s+t \leqq 2) \]
長岡技術科学大学 国立 長岡技術科学大学 2010年 第1問
平面上の点P$_n$,Q$_n \ (n=1,\ 2,\ 3,\ \cdots)$を次のように定める. \\
P$_1(0,\ 0)$,Q$_1(0,\ 1)$とする. P$_n$,Q$_n$が定められているとして,Q$_n$を中心にP$_n$を時計回りに$\displaystyle \frac{\pi}{2}$回転させた点をP$_{n+1}$とする.さらに,P$_{n+1}$を中心にQ$_n$を反時計回りに$\displaystyle \frac{\pi}{2}$回転させた点とP$_{n+1}$の中点をQ$_{n+1}$とする.このとき,以下の問いに答えなさい.

(1)P$_2$,P$_3$の座標を求めなさい.
(2)すべてのP$_n$を通る直線の方程式を求めなさい.
(3)線分P$_n$Q$_n$の長さを$n$の式で表しなさい.
(4)P$_n$の$x$座標を$x_n$とおく.$x_n$を$n$の式で表しなさい.
(5)$\displaystyle \lim_{n \to \infty}x_n$を求めなさい.
早稲田大学 私立 早稲田大学 2010年 第3問
座標平面上で,C$_1$,C$_2$,C$_3$を,それぞれ,中心が$(0,\ 0),\ (3,\ 0),\ (5,\ 0)$,半径が$2,\ 1,\ 1$である円周とする.点Pは点$(2,\ 0)$を出発点とし,円周C$_1$上を反時計回りに等速で$2a$秒で一周する.点Qは点$(4,\ 0)$を出発点とし,先ず円周C$_2$上を反時計回りに等速で$a$秒で一周し,続いて円周C$_3$上を時計回りに等速で$a$秒で一周する.\\
\quad 点P,Qが同時に出発するとき,線分PQの長さの最大値と最小値を求めよ.
\quad ただし,$a$は正の定数である.
藤田保健衛生大学 私立 藤田保健衛生大学 2010年 第3問
楕円$\displaystyle A:\frac{x^2}{4}+y^2=1$を原点を中心に反時計回りに$\displaystyle \frac{\pi}{3}$回転させて得た楕円を$B$とする.この回転により,点$\displaystyle \left( -\sqrt{3},\ \frac{1}{2} \right)$を接点とする$A$の接線$y=[ ]$は,$B$に対する接線$y=[ ]$に移される.
名古屋市立大学 公立 名古屋市立大学 2010年 第2問
$xy$平面上に,原点Oを中心とする半径1の円$C$があり,点Pは円$C$の周上を動く.また点Pを中心とする半径$r$の円$D$の周上には点Qがある.いま,点Pが点$(1,\ 0)$から円$C$上を反時計回りに動き,同時に点Qは点$(1+r,\ 0)$から円$D$上を時計回りに動く.ただし,点Pは円$C$上で,点Qは円$D$上でともに等速円運動を行い,点Pが円$C$を一周したとき点Qも円$D$を一周する.次の問いに答えよ.

(1)点Pが円$C$を一周したとき,点Qの軌跡はどのような図形になるか,図示せよ.
(2)$(1)$の図形を$y$軸のまわりに回転させた時にできる立体の体積$V$を$r$の関数として表し,そのグラフの概形を描け.
スポンサーリンク

「反時計回り」とは・・・

 まだこのタグの説明は執筆されていません。